• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 8
  • 4
  • 4
  • 2
  • 2
  • Tagged with
  • 81
  • 81
  • 35
  • 29
  • 25
  • 20
  • 19
  • 16
  • 15
  • 14
  • 14
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

A Spatially-filtered Finite-difference Time-domain Method with Controllable Stability Beyond the Courant Limit

Chang, Chun 19 July 2012 (has links)
This thesis introduces spatial filtering, which is a technique to extend the time step size beyond the conventional stability limit for the Finite-Difference Time-Domain (FDTD) method, at the expense of transforming field nodes between the spatial domain and the discrete spatial-frequency domain and removing undesired spatial-frequency components at every FDTD update cycle. The spatially-filtered FDTD method is demonstrated to be almost as accurate as and more efficient than the conventional FDTD method via theories and numerical examples. Then, this thesis combines spatial filtering and an existing subgridding scheme to form the spatially-filtered subgridding scheme. The spatially-filtered subgridding scheme is more efficient than existing subgridding schemes because the former allows the time step size used in the dense mesh to be larger than the dense mesh CFL limit. However, trade-offs between accuracy and efficiency are required in complicated structures.
72

A Spatially-filtered Finite-difference Time-domain Method with Controllable Stability Beyond the Courant Limit

Chang, Chun 19 July 2012 (has links)
This thesis introduces spatial filtering, which is a technique to extend the time step size beyond the conventional stability limit for the Finite-Difference Time-Domain (FDTD) method, at the expense of transforming field nodes between the spatial domain and the discrete spatial-frequency domain and removing undesired spatial-frequency components at every FDTD update cycle. The spatially-filtered FDTD method is demonstrated to be almost as accurate as and more efficient than the conventional FDTD method via theories and numerical examples. Then, this thesis combines spatial filtering and an existing subgridding scheme to form the spatially-filtered subgridding scheme. The spatially-filtered subgridding scheme is more efficient than existing subgridding schemes because the former allows the time step size used in the dense mesh to be larger than the dense mesh CFL limit. However, trade-offs between accuracy and efficiency are required in complicated structures.
73

Fast Solvers for Integtral-Equation based Electromagnetic Simulations

Das, Arkaprovo January 2016 (has links) (PDF)
With the rapid increase in available compute power and memory, and bolstered by the advent of efficient formulations and algorithms, the role of 3D full-wave computational methods for accurate modelling of complex electromagnetic (EM) structures has gained in significance. The range of problems includes Radar Cross Section (RCS) computation, analysis and design of antennas and passive microwave circuits, bio-medical non-invasive detection and therapeutics, energy harvesting etc. Further, with the rapid advances in technology trends like System-in-Package (SiP) and System-on-Chip (SoC), the fidelity of chip-to-chip communication and package-board electrical performance parameters like signal integrity (SI), power integrity (PI), electromagnetic interference (EMI) are becoming increasingly critical. Rising pin-counts to satisfy functionality requirements and decreasing layer-counts to maintain cost-effectiveness necessitates 3D full wave electromagnetic solution for accurate system modelling. Method of Moments (MoM) is one such widely used computational technique to solve a 3D electromagnetic problem with full-wave accuracy. Due to lesser number of mesh elements or discretization on the geometry, MoM has an advantage of a smaller matrix size. However, due to Green's Function interactions, the MoM matrix is dense and its solution presents a time and memory challenge. The thesis focuses on formulation and development of novel techniques that aid in fast MoM based electromagnetic solutions. With the recent paradigm shift in computer hardware architectures transitioning from single-core microprocessors to multi-core systems, it is of prime importance to parallelize the serial electromagnetic formulations in order to leverage maximum computational benefits. Therefore, the thesis explores the possibilities to expedite an electromagnetic simulation by scalable parallelization of near-linear complexity algorithms like Fast Multipole Method (FMM) on a multi-core platform. Secondly, with the best of parallelization strategies in place and near-linear complexity algorithms in use, the solution time of a complex EM problem can still be exceedingly large due to over-meshing of the geometry to achieve a desired level of accuracy. Hence, the thesis focuses on judicious placement of mesh elements on the geometry to capture the physics of the problem without compromising on accuracy- a technique called Adaptive Mesh Refinement. This facilitates a reduction in the number of solution variables or degrees of freedom in the system and hence the solution time. For multi-scale structures as encountered in chip-package-board systems, the MoM formulation breaks down for parts of the geometry having dimensions much smaller as compared to the operating wavelength. This phenomenon is popularly known as low-frequency breakdown or low-frequency instability. It results in an ill-conditioned MoM system matrix, and hence higher iteration count to converge when solved using an iterative solver framework. This consequently increases the solution time of simulation. The thesis thus proposes novel formulations to improve the spectral properties of the system matrix for real-world complex conductor and dielectric structures and hence form well-conditioned systems. This reduces the iteration count considerably for convergence and thus results in faster solution. Finally, minor changes in the geometrical design layouts can adversely affect the time-to-market of a commodity or a product. This is because the intermediate design variants, in spite of having similarities between them are treated as separate entities and therefore have to follow the conventional model-mesh-solve workflow for their analysis. This is a missed opportunity especially for design variant problems involving near-identical characteristics when the information from the previous design variant could have been used to expedite the simulation of the present design iteration. A similar problem occurs in the broadband simulation of an electromagnetic structure. The solution at a particular frequency can be expedited manifold if the matrix information from a frequency in its neighbourhood is used, provided the electrical characteristics remain nearly similar. The thesis introduces methods to re-use the subspace or Eigen-space information of a matrix from a previous design or frequency to solve the next incremental problem faster.
74

Study of RCS from Aerodynamic Flow using Parallel Volume-Surface Integral Equation

Padhy, Venkat Prasad January 2016 (has links) (PDF)
Estimation of the Radar Cross Section of large inhomogeneous scattering objects such as composite aircrafts, ships and biological bodies at high frequencies has posed large computational challenge. The detection of scattering from wake vortex leading to detection and possible identification of low observable aircrafts also demand the development of computationally efficient and rigorous numerical techniques. Amongst the various methods deployed in Computational Electromagnetics, the Method of Moments predicts the electromagnetic characteristics accurately. Method of Moments is a rigorous method, combined with an array of modeling techniques such as triangular patch, cubical cell and tetrahedral modeling. Method of Moments has become an accurate technique for solving electromagnetic problems from complex shaped homogeneous and inhomogeneous objects. One of the drawbacks of Method of Moments is the fact that it results into a dense matrix, the inversion of which is a computationally complex both in terms of physical memory and compute power. This has been the prime reason for the Method of Moments hitherto remaining as a low frequency method. With recent advances in supercomputing, it is possible to extend the range of Method of Moments for Radar Cross Section computation of aircraft like structures and radiation characteristic of antennas mounted on complex shaped bodies at realistic frequencies of practical interest. This thesis is a contribution in this direction. The main focus of this thesis is development of parallel Method of Moments solvers, applied to solve real world electromagnetic wave scattering and radiation problems from inhomogeneous objects. While the methods developed in this thesis are applicable to a variety of problems in Computational Electromagnetics as shown by illustrative examples, in specific, it has been applied to compute the Radar Cross Section enhancement due to acoustic disturbances and flow inhomogeneities from the wake vortex of an aircraft, thus exploring the possibility of detecting stealth aircraft. Illustrative examples also include the analysis of antenna mounted on an aircraft. In this thesis, first the RWG basis functions have been used in Method of Moments procedure, for solving scattering problems from complex conducting structures such as aircraft and antenna(s) mounted on airborne vehicles, of electrically large size of about 45 and 0.76 million unknowns. Next, the solver using SWG basis functions with tetrahedral and pulse basis functions with cubical modeling have been developed to solve scattering from 3D inhomogeneous bodies. The developed codes are validated by computing the Radar Cross Section of spherical homogeneous and inhomogeneous layered scatterers, lossy dielectric cylinder with region wise inhomogeneity and high contrast dielectric objects. Aerodynamic flow solver ANSYS FLUENT, based on Finite Volume Method is used to solve inviscid compressible flow problem around the aircraft. The gradients of pressure/density are converted to dielectric constant variation in the wake region by using empirical relation and interpolation techniques. Then the Radar Cross Section is computed from the flow inhomogeneities in the vicinity of a model aircraft and beyond (wake zone) using the developed parallel Volume Surface Integral Equation using Method of Moments and investigated more rigorously. Radar Cross Section enhancement is demonstrated in the presence of the flow inhomogeneities and detectability is discussed. The Bragg scattering that occurs when electromagnetic and acoustic waves interact is also discussed and the results are interpreted in this light. The possibility of using the scattering from wake vortex to detect low visible aircraft is discussed. This thesis also explores the possibility of observing the Bragg scattering phenomenon from the acoustic disturbances, caused by the wake vortex. The latter sets the direction for use of radars for target identification and beyond target detection. The codes are parallelized using the ScaLAPACK and BiCG iterative method on shared and distributed memory machines, and tested on variety of High Performance Computing platforms such as Blue Gene/L (22.4TF), Tyrone cluster, CSIR-4PI HP Proliant 3000 BL460c (360TF) and CRAY XC40 machines. The parallelization speedup and efficiency of all the codes has also been shown.
75

Modélisation Multi-échelles : de l'Electromagnétisme à la Grille / Multi-scale Modeling : from Electromagnetism to Grid

Khalil, Fadi 14 December 2009 (has links)
Les performances des outils numériques de simulation électromagnétique de structures complexes, i.e., échelles multiples, sont souvent limitées par les ressources informatiques disponibles. De nombreux méso-centres, fermes et grilles de calcul, se créent actuellement sur les campus universitaires. Utilisant ces ressources informatiques mutualisées, ce travail de thèse s'attache à évaluer les potentialités du concept de grille de calcul (Grid Computing) pour la simulation électromagnétique de structures multi-échelles. Les outils numériques de simulation électromagnétique n'étant pas conçus pour être utilisés dans un environnement distribué, la première étape consistait donc à les modifier afin de les déployer sur une grille de calcul. Une analyse approfondie a ensuite été menée pour évaluer les performances des outils de simulation ainsi déployés sur l'infrastructure informatique. Des nouvelles approches pour le calcul électromagnétique distribué avec ces outils sont présentées et validées. En particulier, ces approches permettent la réalisation de simulation électromagnétique de structures à échelles multiples en un temps record et avec une souplesse d'utilisation. / The numerical electromagnetic tools for complex structures simulation, i.e. multi-scale, are often limited by available computation resources. Nowadays, Grid computing has emerged as an important new field, based on shared distributed computing resources of Universities and laboratories. Using these shared resources, this study is focusing on grid computing potential for electromagnetic simulation of multi-scale structure. Since the numerical simulations tools codes are not initially written for distributed environment, the first step consists to adapt and deploy them in Grid computing environment. A performance study is then realized in order to evaluate the efficiency of execution on the test-bed infrastructure. New approaches for distributing the electromagnetic computations on the grid are presented and validated. These approaches allow a very remarkable simulation time reduction for multi-scale structures and friendly-user interfaces
76

[en] INVESTIGATION OF ELECTROMAGNETIC PROPAGATION IN PLASMA STRUCTURES THROUGH EIGENFUNCTION EXPANSIONS AND FDTD TECHNIQUES / [pt] INVESTIGAÇÃO DE PROPAGAÇÃO ELETROMAGNÉTICA EM ESTRUTURAS DE PLASMA ATRAVÉS DE EXPANSÕES EM AUTOFUNÇÕES E TÉCNICAS FDTD

JULIO DE LIMA NICOLINI 18 July 2017 (has links)
[pt] Plasma é um dos quatro estados fundamentais da matéria, presente em forma natural na Terra na ionosfera, em relâmpagos e nas chamas resultantes de combustão, assim como em forma artificial em lâmpadas de neônio, lâmpadas fluorescentes e processos industriais. O comportamento de plasmas é extraordinariamente complexo e variado, como por exemplo a formação espontânea de características espaciais interessantes em variadas escalas diferentes de comprimento. Uma antena de plasma, por sua vez, é uma estrutura radiante baseada em um elemento de plasma em vez de um condutor metálico, o que gera diversas vantagens e características úteis de um ponto de vista tecnológico. Nesse presente trabalho, uma investigação da propagação eletromagnética dentro de estruturas de plasma é realizada através de métodos teóricos e numéricos como um primeiro passo em direção ao desenvolvimento de modelos apropriados para o estudo de antenas de plasma. / [en] Plasma is one of the four fundamental states of matter, present on Earth in natural form at the ionosphere, in lightning strikes and in the flames resulting from combustion, as well as in artificial form in neon signs, fluorescent light bulbs and industrial processes. Plasma behaviour is extraordinarily complex and varied, e.g. the spontaneous formation of interesting spatial features over a wide range of length scales. A plasma antenna, on the other hand, is a radiating structure based in a plasma element instead of a metallic conductor, which creates several technological advantages and useful characteristics. In this present work, an investigation of electromagnetic propagation inside of plasma structures is performed through both theoretical and numerical means as a first step towards constructing appropriate models for the study of plasma antennas.
77

Investigation of Near-Field Contribution in SBR for Installed Antenna Performance

Hultin, Harald January 2019 (has links)
To investigate near-eld contributions for installed antennas, an in-house code iswritten to incorporate near-eld terms in Shooting and Bouncing Rays (SBR). SBRis a method where rays are launched toward an object and scatter using GeometricalOptics (GO). These rays induce currents on the object, from which the totalscattered eld can be found.To gauge the eect of near-eld terms, the in-house code can be set to excludenear-eld terms. Due to this characteristic, the method is named SBR Includingor Excluding Near-eld Terms (SIENT). The SIENT implementation is thoroughlydescribed. To make SIENT more exible, the code works with triangulated meshesof objects. Antennas are represented as near-eld sources, allowing complex antennasto be represented by simple surface currents. Further, some implementedoptimizations of SIENT are shown.To test the implemented method, SIENT is compared to a reference solution andcomparable commercial SBR solvers. It is shown that SIENT compares well to thecommercial options. Further, it is shown that the inclusion of near-eld terms actsas a small correction to the far-eld of the installed antenna. / För att undersöka närfältsbidrag för installerade antenner, har en kod skrivits för‌att ta med närfältstermer i Shooting Bouncing Rays (SBR). SBR är en metod där strålar (”rays”) skjuts mot ett object och sprids via Geometrisk Optik (GO). Dessa strålar inducerar strömmar på objectet, från vilka det totala sprida fältet kan hittas. För att undersöka bidraget från närfältstermer, så kan koden exkludera dessa. På grund av denna karaktär, kallas koden SBR Including or Excluding Near-field Terms (SIENT). Implementationen av SIENT beskrivs utförligt. För att göra SIENT mer flexibel, arbetar SIENT med triangulerade nät av objekt. Antenner representeras av närfältskällor, vilket låter komplexa antenner representeras med enkla yt-strömmar.Implementerade optimeringar av SIENT visas också.För att testa den implementerade metoden, jämförs SIENT med en referenslösning och jämförbara kommerciella SBR-lösare. Det visas att SIENT överensstämmer bra med kommerciella alternativ. Det visas också att närfältstermer agerar som enmindre korrektion till fjärrfältet av den installerade antennen.
78

Enhancing numerical modelling efficiency for electromagnetic simulation of physical layer components

Sasse, Hugh Granville January 2010 (has links)
The purpose of this thesis is to present solutions to overcome several key difficulties that limit the application of numerical modelling in communication cable design and analysis. In particular, specific limiting factors are that simulations are time consuming, and the process of comparison requires skill and is poorly defined and understood. When much of the process of design consists of optimisation of performance within a well defined domain, the use of artificial intelligence techniques may reduce or remove the need for human interaction in the design process. The automation of human processes allows round-the-clock operation at a faster throughput. Achieving a speedup would permit greater exploration of the possible designs, improving understanding of the domain. This thesis presents work that relates to three facets of the efficiency of numerical modelling: minimizing simulation execution time, controlling optimization processes and quantifying comparisons of results. These topics are of interest because simulation times for most problems of interest run into tens of hours. The design process for most systems being modelled may be considered an optimisation process in so far as the design is improved based upon a comparison of the test results with a specification. Development of software to automate this process permits the improvements to continue outside working hours, and produces decisions unaffected by the psychological state of a human operator. Improved performance of simulation tools would facilitate exploration of more variations on a design, which would improve understanding of the problem domain, promoting a virtuous circle of design. The minimization of execution time was achieved through the development of a Parallel TLM Solver which did not use specialized hardware or a dedicated network. Its design was novel because it was intended to operate on a network of heterogeneous machines in a manner which was fault tolerant, and included a means to reduce vulnerability of simulated data without encryption. Optimisation processes were controlled by genetic algorithms and particle swarm optimisation which were novel applications in communication cable design. The work extended the range of cable parameters, reducing conductor diameters for twisted pair cables, and reducing optical coverage of screens for a given shielding effectiveness. Work on the comparison of results introduced ―Colour maps‖ as a way of displaying three scalar variables over a two-dimensional surface, and comparisons were quantified by extending 1D Feature Selective Validation (FSV) to two dimensions, using an ellipse shaped filter, in such a way that it could be extended to higher dimensions. In so doing, some problems with FSV were detected, and suggestions for overcoming these presented: such as the special case of zero valued DC signals. A re-description of Feature Selective Validation, using Jacobians and tensors is proposed, in order to facilitate its implementation in higher dimensional spaces.
79

Fast algorithms for frequency domain wave propagation

Tsuji, Paul Hikaru 22 February 2013 (has links)
High-frequency wave phenomena is observed in many physical settings, most notably in acoustics, electromagnetics, and elasticity. In all of these fields, numerical simulation and modeling of the forward propagation problem is important to the design and analysis of many systems; a few examples which rely on these computations are the development of metamaterial technologies and geophysical prospecting for natural resources. There are two modes of modeling the forward problem: the frequency domain and the time domain. As the title states, this work is concerned with the former regime. The difficulties of solving the high-frequency wave propagation problem accurately lies in the large number of degrees of freedom required. Conventional wisdom in the computational electromagnetics commmunity suggests that about 10 degrees of freedom per wavelength be used in each coordinate direction to resolve each oscillation. If K is the width of the domain in wavelengths, the number of unknowns N grows at least by O(K^2) for surface discretizations and O(K^3) for volume discretizations in 3D. The memory requirements and asymptotic complexity estimates of direct algorithms such as the multifrontal method are too costly for such problems. Thus, iterative solvers must be used. In this dissertation, I will present fast algorithms which, in conjunction with GMRES, allow the solution of the forward problem in O(N) or O(N log N) time. / text
80

Simulation of Engineered Nanostructured Thin Films

Cheung, JASON 01 April 2009 (has links)
The invention of the Glancing Angle Deposition (GLAD) technique a decade ago enabled the fabrication of nanostructured thin films with highly tailorable structural, electrical, optical, and magnetic properties. Here a three-dimensional atomic-scale growth simulator has been developed to model the growth of thin film materials fabricated with the GLAD technique, utilizing the Monte Carlo (MC) and Kinetic Monte Carlo (KMC) methods; the simulator is capable of predicting film structure under a wide range of deposition conditions with a high degree of accuracy as compared to experiment. The stochastic evaporation and transport of atoms from the vapor source to the substrate is modeled as random ballistic deposition, incorporating the dynamic variation in substrate orientation that is central to the GLAD technique, and surface adatom diffusion is modeled as either an activated random walk (MC), or as energy dependent complete system transitions with rates calculated based on site-specific bond counting (KMC). The Sculptured Nanostructured Film Simulator (SNS) provides a three-dimensional physical prediction of film structure given a set of deposition conditions, enabling the calculation of film properties including porosity, roughness, and fractal dimension. Simulations were performed under various growth conditions in order to gain an understanding of the effects of incident angle, substrate rotation, tilt angle, and temperature on the resulting morphology of the thin film. Analysis of the evolution of film porosity during growth suggests a complex growth dynamic with significant variations with changes in tilt or substrate motion, in good agreement with x-ray reflectivity measurements. Future development will merge the physical structure growth simulator, SNS, with Finite-Difference Time-Domain (FDTD) electromagnetics simulation to allow predictive design of nanostructured optical materials. / Thesis (Master, Physics, Engineering Physics and Astronomy) -- Queen's University, 2009-03-31 13:22:11.843

Page generated in 0.4329 seconds