• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 148
  • 148
  • 148
  • 148
  • 56
  • 50
  • 44
  • 41
  • 41
  • 39
  • 38
  • 36
  • 35
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Design And Optimization Of A Wave Energy Harvester Utilizing A Flywheel Energy Storage System

Helkin, Steven Alexander 01 January 2011 (has links)
This thesis details the design and optimization of a buoy used to collect renewable energy from ocean waves. The proposed buoy is a point absorber—a device that transforms the kinetic energy of the vertical motion of surface waves into electrical energy. The focus of the research is on the mechanical system used to collect the energy, and methods to improve it for eventual use in an actual wave energy harvester. A flywheel energy storage system was utilized in order to provide an improved power output from the system, even with the intermittent input of force exerted by ocean waves. A series of laboratory prototypes were developed to analyze parameters that are important to the success of the point absorb mechanical system. By introducing a velocity-based load control scheme in conjunction with flywheel energy storage, it was seen that the average power output by the prototype was increased. The generator load is controlled via a relay switch that removes electrical resistance from the generator—this sacrifices time during which power is drawn from the system, but also allows the buoy to move with less resistance. A simulation model was developed in order to analyze the theoretical wave absorber system and optimize the velocity threshold parameters used in the load control. Results indicate that the power output by the system can be substantially improved through the use of a flywheel energy storage control scheme that engages and disengages the electrical load based on the rotational velocity of the flywheel system. The results of the optimization are given for varying-sized generator systems input into the simulation in order to observe the associated trends.
72

Physical Testing of Potential Football Helmet Design Enhancements

Schuster, Michael Jeremy 01 June 2016 (has links) (PDF)
Football is a much loved sport in the United States. Unfortunately, it is also hard on the players and puts them at very high risk of concussion. To combat this an inventor in Santa Barbara brought a new design to Cal Poly to be tested. The design was tested in small scale first in order to make some preliminary conclusions about the design. In order to fully test the helmet design; however, full scale testing was required. In order to carry out this testing a drop tower was built based on National Operating Committee on Standards for Athletic Equipment, NOCSAE, specification. The drop tower designed for Cal Poly is a lower cost and highly portable version of the standard NOCSAE design. Using this drop tower and a 3D printed prototype the new design was tested in full scale.
73

Novel Approach to Junctional Bleeding: Tourniquet Device Proposal for Battlefield Hemorrhage Control

Cabaniss, Kyle W 01 March 2013 (has links) (PDF)
This study investigated possible solutions to the current wartime problem of junctional hemorrhaging, or massive traumatic hemorrhaging in non-tourinquetable areas such as the neck, groin, or armpit. Junctional hemorrhaging has been identified as a major contributor to potentially survivable deaths seen on the battlefield today and therefore is a priority for the U.S. armed and coalition forces (Kragh et al., 2011a; Bozeman, 2011). Common tourniquets today are standard issue and carried by soldiers in the military, but are limited to distal extremity trauma. As the battlefield has changes however, trauma has transformed from commonly seen gunshot wounds to more extreme trauma such as dismounted complex blast injuries which typically includes loss of one or more appendages. These newly found situations render the traditional tourniquet ineffective. Thus, the development of a new tourniquet to control hemorrhaging from regions such as the neck, armpit, and groin has been deemed necessary. The development of a new tourniquet for hemorrhage control included market research, preliminary testing to determine design restraints, design ideation, finite element analysis, manufacturing a prototype, and prototype testing. Research and comparisons were done of the strengths and weaknesses of tourniquets already approved by the Food and Drug Administration (FDA). Next, design limitations were found using preliminary testing on a blood-flow replicate model developed by Tracey Cheung. The results from this testing provided a framework for designing a new tourniquet. A new approach to control junction hemorrhaging was then designed, built, and tested on the Cheung model. To verify the design, simplified models were analyzed using finite element analysis. The prototype was then tested and compared against the FDA approved tourniquets, listing the advantages and possible shortcomings.
74

Design and Testing of a Top Mask Projection Ceramic Stereolithography System for Ceramic Part Manufacturing

De Caussin, Dylan Robert 01 June 2016 (has links) (PDF)
Ceramic manufacturing is an expensive process with long lead times between the initial design and final manufactured part. This limits the use of ceramic as a viable material unless there is a large project budget or high production volume associated with the part. Ceramic stereolithography is an alternative to producing low cost parts through the mixing of a photo curable resin and ceramic particles. This is an additive manufacturing process in which each layer is built upon the previous to produce a green body that can be sintered for a fully dense ceramic part. This thesis introduces a new approach to ceramic stereolithography with a top mask projection light source which is much more economical compared to current vector scanning methods. The research goes through the design and development of a stereolithography printer prototype capable of handling ceramics and the testing of different mixtures to provide the best printing results with varying viscosities. The initial testing of this printer has created a starting point for top mask projection as an economical alternative to current ceramic manufacturing techniques.
75

Fracture Control Modeling with the Finite Element Method

Pluma Reyes, Jorge A 01 June 2019 (has links) (PDF)
This thesis investigates the feasibility and usability of the finite element method approach in the design of crack arresting devices. Current design and manufacturing practices are improving structures' susceptibility to fracture, in particular brittle fracture; however, cracks in structures are still observed within their lifespans due to severe unexpected service conditions, poor designs, or faulty manufacturing. Crack arrester systems can be added during service to prolong the longevity of structures with sub-critical or critical flaws. Fracture properties of different specific structures under specific services can be obtained experimentally, however, experiments are expensive and of high complexity. Alternatively, the finite element method can reduce these factors and provide reliable solutions. Finite element analysis conducted provides insight into the modeling process and the effectiveness of the simulation of fracture problems. Fracture mechanics technology in conjunction with the finite element method allows for the evaluation of the effectiveness of introducing crack arresters to a flawed structure. Additionally, the simulation of recorded crack arrester experiments alongside analytic methods are used to verify the finite element analysis results. The work in this thesis verifies the validity of using the finite element approach in designing crack arrester systems for flawed structures and suggests further investigation be done with variation in crack arrester types.
76

Printed Circuit Board Design and Layout for Hobbyists, Engineers, and Students

Derrenbacher, Michael A 01 December 2021 (has links) (PDF)
Printed Circuit Boards (PCBs) are a ubiquitous element of virtually every electronic system manufactured world-wide. It is not a stretch of the imagination to say that if it’s electronic, there is a PCB in it. PCBs are necessary tools for electronics work, and tools need to have instructions. For better or worse, PCB knowledge is a deep and wide ocean. There is much to cover for even a surface level understanding, and there are deep areas rich in technical expertise. Navigating the ocean of knowledge is treacherous; common knowledge of yore can be downright dubious now. PCB manufacturing and electronics as a whole have seen incredible developments in the past few decades, and knowledge once true may be outdated. At the same time there is a downpour of new techniques to use and challenges to face. The storm of information deepens the sea and can make it seem impossible to get anywhere without getting utterly lost. There are islands of knowledge out there hiding in books and papers and websites, but no guide to get anywhere. This thesis aims to guide the reader through the sea of information and provides a map that charts the shallows of beginner knowledge, into the deep depths of advanced design, of how and where to learn more. This thesis serves as an aiding means through the exciting and vast world of PCB design and layout.
77

Design and Testing of a Hybrid Direct Ink Writing and Fused Deposition Modeling Multi-Process 3D Printer

Losada, Alexander X 01 January 2022 (has links)
Multi-material 3D Printing allows the ability to fabricate parts with tuned mechanical properties, multi-process 3D printing widens the choices of available fabrication materials. The objective of this study is to build a custom 3D printing test bed that is capable of printing multi-material parts with fused deposition modeling and direct ink writing techniques. A 3D printer, controlled by an industrial motion control system, with FDM and DIW capabilities was built by combining FDM extruders with a pneumatic dispensing system on a single platform. By utilizing the Direct Ink Writing function, we expand the number of printable materials to include some off the shelf silicones and epoxies, as well as custom, user made, materials. This study will further expand the manufacturing and research capabilities within the additive manufacturing discipline.
78

Automation and high speed forming of thin layer composite materials

Reeves, Jake 13 May 2022 (has links)
The future of aerospace has long been dedicated to making airplanes more lightweight and faster than ever before. Automation is essential to achieve these goals while maintaining a standard of consistency and quality. The overall goal of this research is to develop an automated piece of equipment that can effectively laminate a contoured composite layup at a rapid pace in order to compete with alternative options. In this study, the equipment and its components were designed and first evaluated through computational modeling and simulation. Then a prototype of the developed equipment was built for experimental testing and validating. The manufactured equipment was applied to form laminate sheets with different contours, ramp rates, and thicknesses. The forming speed and quality of the formed laminate sheets were assessed to validate the developed equipment.
79

INKJET PRINTING: FACING CHALLENGES AND ITS NEW APPLICATIONS IN COATING INDUSTRY

Poozesh, Sadegh 01 January 2015 (has links)
This study is devoted to some of the most important issues for advancing inkjet printing for possible application in the coating industry with a focus on piezoelectric droplet on demand (DOD) inkjet technology. Current problems, as embodied in liquid filament breakup along with satellite droplet formation and reduction in droplet sizes, are discussed and then potential solutions identified. For satellite droplets, it is shown that liquid filament break-up behavior can be predicted by using a combination of two pi-numbers, including the Weber number, We and the Ohnesorge number, Oh, or the Reynolds number, Re, and the Weber number, We. All of these are dependent only on the ejected liquid properties and the velocity waveform at the print-head inlet. These new criteria are shown to have merit in comparison to currently used criteria for identifying filament physical features such as length and diameter that control the formation of subsequent droplets. In addition, this study performs scaling analyses for the design and operation of inkjet printing heads. Because droplet sizes from inkjet nozzles are typically on the order of nozzle dimensions, a numerical simulation is carried out to provide insight into how to reduce droplet sizes by employing a novel input waveform impressed on the print-head liquid inflow without changing the nozzle geometry. A regime map for characterizing the generation of small droplets based on We and a non-dimensional frequency, Ω is proposed and discussed. In an attempt to advance inkjet printing technology for coating purposes, a prototype was designed and then tested numerically. The numerical simulation successfully proved that the proposed prototype could be useful for coating purposes by repeatedly producing mono-dispersed droplets with controllable size and spacing. Finally, the influences of two independent piezoelectric characteristics - the maximum head displacement and corresponding frequency, was investigated to examine the quality of filament breakup quality and favorable piezoelectric displacements and frequencies were identified.
80

3D Infrastructure Condition Assessment For Rail Highway Applications

Wang, Teng 01 January 2016 (has links)
Highway roughness is a concern for both the motoring public and highway authorities. Roughness may even increase the risk of crashes. Rail-highway grade crossings are particularly problematic. Roughness may be due to deterioration or simply due to the way the crossing was built to accommodate grade change, local utilities, or rail elevation. With over 216,000 crossings in the US, maintenance is a vast undertaking. While methods are available to quantify highway roughness, no method exists to quantitatively assess the condition of rail crossings. Conventional inspection relies on a labor-intensive process of qualitative judgment. A quantifiable, objective and extensible procedure for rating and prioritizing improvement of crossings is thus desired. In this dissertation, a 3D infrastructure condition assessment model is developed for evaluating the condition and performance of rail highway grade crossings. Various scanning techniques and devices are developed or used to obtain the 3D “point cloud” or surface as the first step towards quantifying crossing roughness. Next, a technique for repeatable field measurement of acceleration is presented and tested to provide a condition index. Acceleration-based metrics are developed, and these can be used to rate and compare crossings for improvement programs to mitigate potential vehicle damage and provide passenger comfort. A vehicle dynamic model is next customized to use surface models to estimate vertical accelerations eliminating the need for field data collection. Following, crossing roughness and rideability is estimated directly from 3D point clouds. This allows isolation of acceleration components derived from the surface condition and original design profile. Finally, a practice ready application of the 3D point cloud is developed and presented to address hump crossing safety. In conclusion, the dissertation presents several methods to assess the condition and performance of rail crossings. It provides quantitative metrics that can be used to evaluate designs and construction methods, and efficiently implement cost effective improvement programs. The metrics provide a technique to measure and monitor system assets over time, and can be extended to other infrastructure components such as pavements and bridges.

Page generated in 0.1332 seconds