Spelling suggestions: "subject:"computer architecture."" "subject:"coomputer architecture.""
381 |
A study of architecture and performance of IBM Cyclops64 interconnection networkZhang, Ying Ping. January 2005 (has links)
Thesis (M.E.E.)--University of Delaware, 2005. / Principal faculty advisor: Guang R. Gao, Dept. of Electrical & Computer Engineering. Includes bibliographical references.
|
382 |
FPGA-based experiment platform for hardware-software codesign and hardware emulation /Nagaonkar, Yajuvendra, January 2006 (has links) (PDF)
Thesis (M.S.)--Brigham Young University. Dept. of Electrical and Computer Engineering, 2006. / Includes bibliographical references (p. 219-221).
|
383 |
Design and implementation of a library to support the Common Component Architecture (CCA) over LegionBari, Himanshu. January 2004 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Department of Computer Science, 2004. / Includes bibliographical references.
|
384 |
Single-level dynamic register caching architecture for high-performance superscalar processors /Liebert, John A. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2007. / Printout. Includes bibliographical references (leaves 30-32). Also available on the World Wide Web.
|
385 |
Tower methodology for verification of multi-core architecture a case study /Parthasarathi, Divya. January 2005 (has links)
Thesis (M.E.E.)--University of Delaware, 2005. / Principal faculty advisor: Guang R. Gao, Dept. of Electrical and Computer Engineeering. Includes bibliographical references.
|
386 |
Parallelization and performance optimization of bioinformatics and biomedical applications targeted to advanced computer architecturesNiu, Yanwei. January 2005 (has links)
Thesis (Ph.D.)--University of Delaware, 2005. / Principal faculty advisors: Kenneth E. Barner and Guang Gao, Dept. of Electrical and Computer Engineering. Includes bibliographical references.
|
387 |
A technology-scalable composable architectureKim, Changkyu, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
388 |
The Effects of Microprocessor Architecture on Speedup in Distrbuted Memory SupercomputersBeane, Glen L. January 2004 (has links) (PDF)
No description available.
|
389 |
Memory consistency directed cache coherence protocols for scalable multiprocessorsElver, Marco Iskender January 2016 (has links)
The memory consistency model, which formally specifies the behavior of the memory system, is used by programmers to reason about parallel programs. From a hardware design perspective, weaker consistency models permit various optimizations in a multiprocessor system: this thesis focuses on designing and optimizing the cache coherence protocol for a given target memory consistency model. Traditional directory coherence protocols are designed to be compatible with the strictest memory consistency model, sequential consistency (SC). When they are used for chip multiprocessors (CMPs) that provide more relaxed memory consistency models, such protocols turn out to be unnecessarily strict. Usually, this comes at the cost of scalability, in terms of per-core storage due to sharer tracking, which poses a problem with increasing number of cores in today’s CMPs, most of which no longer are sequentially consistent. The recent convergence towards programming language based relaxed memory consistency models has sparked renewed interest in lazy cache coherence protocols. These protocols exploit synchronization information by enforcing coherence only at synchronization boundaries via self-invalidation. As a result, such protocols do not require sharer tracking which benefits scalability. On the downside, such protocols are only readily applicable to a restricted set of consistency models, such as Release Consistency (RC), which expose synchronization information explicitly. In particular, existing architectures with stricter consistency models (such as x86) cannot readily make use of lazy coherence protocols without either: adapting the protocol to satisfy the stricter consistency model; or changing the architecture’s consistency model to (a variant of) RC, typically at the expense of backward compatibility. The first part of this thesis explores both these options, with a focus on a practical approach satisfying backward compatibility. Because of the wide adoption of Total Store Order (TSO) and its variants in x86 and SPARC processors, and existing parallel programs written for these architectures, we first propose TSO-CC, a lazy cache coherence protocol for the TSO memory consistency model. TSO-CC does not track sharers and instead relies on self-invalidation and detection of potential acquires (in the absence of explicit synchronization) using per cache line timestamps to efficiently and lazily satisfy the TSO memory consistency model. Our results show that TSO-CC achieves, on average, performance comparable to a MESI directory protocol, while TSO-CC’s storage overhead per cache line scales logarithmically with increasing core count. Next, we propose an approach for the x86-64 architecture, which is a compromise between retaining the original consistency model and using a more storage efficient lazy coherence protocol. First, we propose a mechanism to convey synchronization information via a simple ISA extension, while retaining backward compatibility with legacy codes and older microarchitectures. Second, we propose RC3 (based on TSOCC), a scalable cache coherence protocol for RCtso, the resulting memory consistency model. RC3 does not track sharers and relies on self-invalidation on acquires. To satisfy RCtso efficiently, the protocol reduces self-invalidations transitively using per-L1 timestamps only. RC3 outperforms a conventional lazy RC protocol by 12%, achieving performance comparable to a MESI directory protocol for RC optimized programs. RC3’s storage overhead per cache line scales logarithmically with increasing core count and reduces on-chip coherence storage overheads by 45% compared to TSO-CC. Finally, it is imperative that hardware adheres to the promised memory consistency model. Indeed, consistency directed coherence protocols cannot use conventional coherence definitions (e.g. SWMR) to be verified against, and few existing verification methodologies apply. Furthermore, as the full consistency model is used as a specification, their interaction with other components (e.g. pipeline) of a system must not be neglected in the verification process. Therefore, verifying a system with such protocols in the context of interacting components is even more important than before. One common way to do this is via executing tests, where specific threads of instruction sequences are generated and their executions are checked for adherence to the consistency model. It would be extremely beneficial to execute such tests under simulation, i.e. when the functional design implementation of the hardware is being prototyped. Most prior verification methodologies, however, target post-silicon environments, which when used for simulation-based memory consistency verification would be too slow. We propose McVerSi, a test generation framework for fast memory consistency verification of a full-system design implementation under simulation. Our primary contribution is a Genetic Programming (GP) based approach to memory consistency test generation, which relies on a novel crossover function that prioritizes memory operations contributing to non-determinism, thereby increasing the probability of uncovering memory consistency bugs. To guide tests towards exercising as much logic as possible, the simulator’s reported coverage is used as the fitness function. Furthermore, we increase test throughput by making the test workload simulation-aware. We evaluate our proposed framework using the Gem5 cycle accurate simulator in full-system mode with Ruby (with configurations that use Gem5’s MESI protocol, and our proposed TSO-CC together with an out-of-order pipeline). We discover 2 new bugs in the MESI protocol due to the faulty interaction of the pipeline and the cache coherence protocol, highlighting that even conventional protocols should be verified rigorously in the context of a full-system. Crucially, these bugs would not have been discovered through individual verification of the pipeline or the coherence protocol. We study 11 bugs in total. Our GP-based test generation approach finds all bugs consistently, therefore providing much higher guarantees compared to alternative approaches (pseudo-random test generation and litmus tests).
|
390 |
Proposta e simulação de uma arquitetura RISC / Design and simulation of a RISC architectureFredy Joao Valente 12 April 1991 (has links)
RISC - Uma nova tendência em arquitetura de computadores. Este trabalho apresenta um estudo de como surgiu esta nova arquitetura, e suas características básicas, que a diferencia das arquiteturas convencionais. Uma proposta de microprocessador RISC é apresentada, com sua rota de dados completamente detalhada. Um simulador para arquitetura RISC foi então construído, para se testar este microprocessador. Para validar o simulador, que é a idéia principal deste trabalho, e para se avaliar a arquitetura do microprocessador proposto, usou-se o benchmark Dhrystone, e os resultados foram comparados com máquinas comerciais. / RISC - A new trend in computer architecture. This work presents a study of how this new architecture emerged, and the basic caracteristics that diferentiate it from the conventional architectures. A proposed RISC microprocessor is presented with the completely detailed data-path. A simulator for the RIse architecture was built to test this microprocessor. To validate the simulator, which is the main idea of this work, and to evaluate the architecture of the proposed microprocessor, the Dhrystone benchmark was used and the results were compared with commercial machines.
|
Page generated in 0.0805 seconds