• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 935
  • 173
  • 93
  • 66
  • 33
  • 32
  • 32
  • 32
  • 32
  • 32
  • 30
  • 30
  • 12
  • 8
  • 6
  • Tagged with
  • 1669
  • 1669
  • 255
  • 200
  • 189
  • 169
  • 160
  • 153
  • 149
  • 147
  • 144
  • 143
  • 143
  • 141
  • 128
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
971

CLBlood: A Cell-Based Light Interaction Model for Human Blood

Yim, Daniel January 2012 (has links)
The development of predictive appearance models for organic tissues is a challenging task due to the inherent complexity of these materials. In this thesis, we closely examine the biophysical processes responsible for the appearance attributes of whole blood, one the most fundamental of these materials. We describe a new appearance model that simulates the mechanisms of light propagation and absorption within the cellular and fluid portions of this specialized tissue. The proposed model employs a comprehensive, and yet flexible first principles approach based on the morphological, optical and biochemical properties of blood cells. This approach allows for environment driven changes in the cells' anatomy and orientation to be appropriately included into the light transport simulations. The correctness and predictive capabilities of the proposed model are quantitatively and qualitatively evaluated through comparisons of modeled results with actual measured data and experimental observations reported in the scientific literature. Its incorporation into rendering systems is illustrated through images of blood samples depicting appearance variations controlled by physiologically meaningful parameters. Besides the contributions to the modeling of material appearance, the research presented in this thesis is also expected to have applications in a wide range of biomedical areas, from optical diagnostics to the visualization and noninvasive imaging of blood-perfused tissues.
972

Graph Rotation Systems for Physical Construction of Large Structures

Xing, Qing 2011 December 1900 (has links)
In this dissertation, I present an approach for physical construction of large structures. The approach is based on the graph rotation system framework. I propose two kinds of physical structures to represent the shape of design models. I have developed techniques to generate developable panels from any input polygonal mesh, which can be easily assembled to get the shape of the input polygonal mesh. The first structure is called plain woven structures. I have developed the ?projection method? to convert mathematical weaving cycles on any given polygonal mesh to developable strip panels. The width of weaving strips varies so that the surface of the input model can be covered almost completely. When these strip panels are assembled together, resulting shape resembles to a weaving in 3-space. The second structure is called band decomposition structures. I have developed a method to convert any given polygonal mesh into star-like developable elements, which we call vertex panels. Assembling vertex panels results in band decomposition structures. These band decomposition structures correspond to 2D-thickening of graphs embedded on surfaces. These band decompositions are contractible to their original graph. In a 2D-thickening, each vertex thickens to a polygon and each edge thickens to a band. Within the resulting band decomposition, each polygon corresponds to a vertex and each band corresponds to an edge that connects two vertex polygons. Since the approach is based on graph rotation system framework, the two structures do not have restrictions on design models. The input mesh can be of any genus. The faces in the input mesh can be triangle, quadrilateral, and any polygon. The advantages of this kind of large physical structure construction are low-cost material and prefabrication, easy assemble. Our techniques take the digital fabrication in a new direction and create complex and organic 3D forms. Along the theme of architecture this research has great implication for structure design and makes the more difficult task of construction techniques easier to understand for the fabricator. It has implications to the sculpture world as well as architecture.
973

Real-time visualization of 3D city models

Buchholz, Henrik January 2006 (has links)
An increasing number of applications requires user interfaces that facilitate the handling of large geodata sets. Using virtual 3D city models, complex geospatial information can be communicated visually in an intuitive way. Therefore, real-time visualization of virtual 3D city models represents a key functionality for interactive exploration, presentation, analysis, and manipulation of geospatial data. This thesis concentrates on the development and implementation of concepts and techniques for real-time city model visualization. It discusses rendering algorithms as well as complementary modeling concepts and interaction techniques. Particularly, the work introduces a new real-time rendering technique to handle city models of high complexity concerning texture size and number of textures. Such models are difficult to handle by current technology, primarily due to two problems: - Limited texture memory: The amount of simultaneously usable texture data is limited by the memory of the graphics hardware. - Limited number of textures: Using several thousand different textures simultaneously causes significant performance problems due to texture switch operations during rendering. The multiresolution texture atlases approach, introduced in this thesis, overcomes both problems. During rendering, it permanently maintains a small set of textures that are sufficient for the current view and the screen resolution available. The efficiency of multiresolution texture atlases is evaluated in performance tests. To summarize, the results demonstrate that the following goals have been achieved: - Real-time rendering becomes possible for 3D scenes whose amount of texture data exceeds the main memory capacity. - Overhead due to texture switches is kept permanently low, so that the number of different textures has no significant effect on the rendering frame rate. Furthermore, this thesis introduces two new approaches for real-time city model visualization that use textures as core visualization elements: - An approach for visualization of thematic information. - An approach for illustrative visualization of 3D city models. Both techniques demonstrate that multiresolution texture atlases provide a basic functionality for the development of new applications and systems in the domain of city model visualization. / Eine zunehmende Anzahl von Anwendungen benötigt Benutzungsschnittstellen, um den Umgang mit großen Geodatenmengen zu ermöglichen. Virtuelle 3D-Stadtmodelle bieten eine Möglichkeit, komplexe raumbezogene Informationen auf intuitive Art und Weise visuell erfassbar zu machen. Echtzeit-Visualisierung virtueller Stadtmodelle bildet daher eine Grundlage für die interaktive Exploration, Präsentation, Analyse und Bearbeitung raumbezogener Daten. Diese Arbeit befasst sich mit der Entwicklung und Implementierung von Konzepten und Techniken für die Echtzeit-Visualisierung virtueller 3D-Stadtmodelle. Diese umfassen sowohl Rendering-Algorithmen als auch dazu komplementäre Modellierungskonzepte und Interaktionstechniken. Insbesondere wird in dieser Arbeit eine neue Echtzeit-Rendering-Technik für Stadtmodelle hoher Komplexität hinsichtlich Texturgröße und Texturanzahl vorgestellt. Solche Modelle sind durch die derzeit zur Verfügung stehende Technologie schwierig zu bewältigen, vor allem aus zwei Gründen: - Begrenzter Textur-Speicher: Die Menge an gleichzeitig nutzbaren Texturdaten ist beschränkt durch den Speicher der Grafik-Hardware. - Begrenzte Textur-Anzahl: Die gleichzeitige Verwendung mehrerer tausend Texturen verursacht erhebliche Performance-Probleme aufgrund von Textur-Umschaltungs-Operationen während des Renderings. Das in dieser Arbeit vorgestellte Verfahren, das Rendering mit Multiresolutions-Texturatlanten löst beide Probleme. Während der Darstellung wird dazu permanent eine kleine Textur-Menge verwaltet, die für die aktuelle Sichtperspektive und die zur Verfügung stehende Bildschirmauflösung hinreichend ist. Die Effizienz des Verfahrens wird in Performance-Tests untersucht. Die Ergebnisse zeigen, dass die folgenden Ziele erreicht werden: - Echtzeit-Darstellung wird für Modelle möglich, deren Texturdaten-Menge die Kapazität des Hauptspeichers übersteigt. - Der Overhead durch Textur-Umschaltungs-Operationen wird permanent niedrig gehalten, so dass die Anzahl der unterschiedlichen Texturen keinen wesentlichen Einfluss auf die Bildrate der Darstellung hat. Die Arbeit stellt außerdem zwei neue Ansätze zur 3D-Stadtmodell-Visualisierung vor, in denen Texturen als zentrale Visualisierungselemente eingesetzt werden: - Ein Verfahren zur Visualisierung thematischer Informationen. - Ein Verfahren zur illustrativen Visualisierung von 3D-Stadtmodellen. Beide Ansätze zeigen, dass Rendering mit Multiresolutions-Texturatlanten eine Grundlage für die Entwicklung neuer Anwendungen und Systeme im Bereich der 3D-Stadtmodell-Visualisierung bietet.
974

Implementation of Floating Point CORDIC and its Application in 3D Computer Graphics

Wang, Po-Li 02 July 2002 (has links)
Computer graphics has become one of the important method to display information and has been applied in many applications such as CAD, medical image processing, computer animation, multimedia and virtual reality. These popular applications rely on the low-cost and real-time processing of 3D graphics which become available due to the breakthrough in the hardware design of 3D graphic engine. In this thesis, we implement a CORDIC-based floating-point processor that can compute a wide variety of arithmetic operations and show how it can be applied to the design of 3D engine.
975

Resolution independent curved seams in clothing animation using a regular particle grid

Foshee, Jacob Wesley 15 November 2004 (has links)
We present a method for representing seams in clothing animation, and its application in simulation level of detail. Specifically we consider cloth represented as a regular grid of particles connected by spring-dampers, and a seam specified by a closed set of parametric trim curves in the cloth domain. Conventional cloth animation requires the tessellation of seams so that they are handled uniformly by the dynamics process. Our goal is a seam definition which does not constrain the attached clothing panels to be of the same resolution, or even constant resolution, while not being a hindrance to the dynamics process. We also apply our seams to cloth defined on a regular grid, as opposed to the irregular meshes commonly used with seams. The determination of particles interior to the cloth panel can be done using wellknown graphics operations such as scan-conversion. Due to the particle-based nature of the simulation, the dynamics approach combines easily with existing implicit and explicit methods. Finally, because the seams are resolution independent, the particle density per clothing panel can be adjusted as desired. This gives rise to a simple application of the given seams approach illustrating how it may be used for simulation level of detail.
976

The role of transfer-appropriate processing in the effectiveness of decision-support graphics

Stiso, Michael E. 15 November 2004 (has links)
The current project is an examination of the effectiveness of decision-support graphics in a simulated real-world task, and of the role those graphics should play in training. It is also an attempt to apply a theoretical account of memory performance-transfer-appropriate processing-to naturalistic decision making. The task in question is a low-fidelity air traffic control simulation. In some conditions, that task includes decision-support graphics designed to explicitly represent elements of the task that normally must be mentally represented-namely, trajectory and relative altitude. The assumption is that those graphics will encourage a type of processing different from that used in their absence. If so, then according to the theory of transfer-appropriate processing (TAP), the best performance should occur in conditions in which the graphics are present either during both training and testing, or else not at all. For other conditions, the inconsistent presence or absence of the graphics should lead to mismatches in the type of processing used during training and testing, thus hurting performance. A sample of 205 undergraduate students were randomly assigned to four experimental and two control groups. The results showed that the support graphics provided immediate performance benefits, regardless of their presence during training. However, presenting them during training had an apparent overshadowing effect, in that removing them during testing significantly hurt performance. Finally, although no support was found for TAP, some support was found for the similar but more general theory of identical elements.
977

View dependent fluid dynamics

Barran, Brian Arthur 16 August 2006 (has links)
This thesis presents a method for simulating fluids on a view dependent grid structure to exploit level-of-detail with distance to the viewer. Current computer graphics techniques, such as the Stable Fluid and Particle Level Set methods, are modified to support a nonuniform simulation grid. In addition, infinite fluid boundary conditions are introduced that allow fluid to flow freely into or out of the simulation domain to achieve the effect of large, boundary free bodies of fluid. Finally, a physically based rendering method known as photon mapping is used in conjunction with ray tracing to generate realistic images of water with caustics. These methods were implemented as a C++ application framework capable of simulating and rendering fluid in a variety of user-defined coordinate systems.
978

Tangent-ball techniques for shape processing

Whited, Brian Scott 10 November 2009 (has links)
Shape processing defines a set of theoretical and algorithmic tools for creating, measuring and modifying digital representations of shapes.  Such tools are of paramount importance to many disciplines of computer graphics, including modeling, animation, visualization, and image processing.  Many applications of shape processing can be found in the entertainment and medical industries. In an attempt to improve upon many previous shape processing techniques, the present thesis explores the theoretical and algorithmic aspects of a difference measure, which involves fitting a ball (disk in 2D and sphere in 3D) so that it has at least one tangential contact with each shape and the ball interior is disjoint from both shapes. We propose a set of ball-based operators and discuss their properties, implementations, and applications.  We divide the group of ball-based operations into unary and binary as follows: Unary operators include: * Identifying details (sharp, salient features, constrictions) * Smoothing shapes by removing such details, replacing them by fillets and roundings * Segmentation (recognition, abstract modelization via centerline and radius variation) of tubular structures Binary operators include: * Measuring the local discrepancy between two shapes * Computing the average of two shapes * Computing point-to-point correspondence between two shapes * Computing circular trajectories between corresponding points that meet both shapes at right angles * Using these trajectories to support smooth morphing (inbetweening) * Using a curve morph to construct surfaces that interpolate between contours on consecutive slices The technical contributions of this thesis focus on the implementation of these tangent-ball operators and their usefulness in applications of shape processing. We show specific applications in the areas of animation and computer-aided medical diagnosis.  These algorithms are simple to implement, mathematically elegant, and fast to execute.
979

Animating physical phenomena with embedded surface meshes

Wojtan, Chris 17 November 2010 (has links)
Accurate computational representations of highly deformable surfaces are indispensable in the fields of computer animation, medical simulation, computer vision, digital modeling, and computational physics. The focus of this dissertation is on the animation of physics-based phenomena with highly detailed deformable surfaces represented by triangle meshes. We first present results from an algorithm that generates continuum mechanics animations with intricate surface features. This method combines a finite element method with a tetrahedral mesh generator and a high resolution surface mesh, and it is orders of magnitude more efficient than previous approaches. Next, we present an efficient solution for the challenging problem of computing topological changes in detailed dynamic surface meshes. We then introduce a new physics-inspired surface tracking algorithm that is capable of preserving arbitrarily thin features and reproducing realistic fine-scale topological changes like Rayleigh-Plateau instabilities. This physics-inspired surface tracking technique also opens the door for a unique coupling between surficial finite element methods and volumetric finite difference methods, in order to simulate liquid surface tension phenomena more efficiently than any previous method. Due to its dramatic increase in computational resolution and efficiency, this method yielded the first computer simulations of a fully developed crown splash with droplet pinch off.
980

Multi-Resolution Volume Rendering of Large Medical Data Sets on the GPU

Towfeek, Ajden January 2008 (has links)
<p>Volume rendering techniques can be powerful tools when visualizing medical data sets. The characteristics of being able to capture 3-D internal structures make the technique attractive. Scanning equipment is producing medical images, with rapidly increasing resolution, resulting in heavily increased size of the data set. Despite the great amount of processing power CPUs deliver, the required precision in image quality can be hard to obtain in real-time rendering. Therefore, it is highly desirable to optimize the rendering process.</p><p>Modern GPUs possess much more computational power and is available for general purpose programming through high level shading languages. Efficient representations of the data are crucial due to the limited memory provided by the GPU. This thesis describes the theoretical background and the implementation of an approach presented by Patric Ljung, Claes Lundström and Anders Ynnerman at Linköping University. The main objective is to implement a fully working multi-resolution framework with two separate pipelines for pre-processing and real-time rendering, which uses the GPU to visualize large medical data sets.</p>

Page generated in 0.3612 seconds