• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 148
  • 148
  • 148
  • 148
  • 56
  • 50
  • 44
  • 41
  • 41
  • 39
  • 38
  • 36
  • 35
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Process Capability in a Computer Integrated Manufacturing Cell

Austin, Andrew 01 May 2014 (has links)
With the rise of automation in traditional manufacturing processes, more companies are beginning to integrate computer integrated manufacturing (CIM) cells on their production floors. Through CIM cell integration, companies have the ability to reduce process time and increase production. One of the problems created with CIM cell automation is caused by the dependency the sequential steps have on one another. Dependency created by the previous step increases the probability that a process error could occur due to previous variation. One way to eliminate this dependency is through the use of an in-process measuring device such as a Renishaw spindle probe used in conjunction with a computer numerical control (CNC) milling machine. Western Kentucky University (WKU) utilizes a CIM cell in the Senator Mitch McConnell Advanced Manufacturing and Robotics laboratory. The laboratory is located in the Architectural and Manufacturing Sciences department and gives students the opportunity to learn how automated systems can be integrated. The CIM cell consists of three Mitsubishi six-axis robots, a Haas Mini-mill, a Haas GT-10 lathe, an AXYZ, Inc. CNC router table, 120 watt laser engraver, an Automated Storage and Retrieval System (ASRS), material handling conveyor, and vision station. The CIM cell functions throughout the curriculum as a means for applied learning and research. The researcher used this CIM cell in order to determine if an in-process measuring device, such as the Renishaw spindle probe, had the ability to affect process capability. The researcher conducted the study to see if an in-process measuring device can be integrated into the CIM cell located in the Senator Mitch McConnell Advanced Manufacturing and Robotics laboratory to eliminate compounding variation. The researcher discovered that through the use of a Renishaw 40-2 spindle probe used in conjunction with a CNC Haas Mini Mill, process capability has the potential to be improved in a CIM cell by accounting for compounding variation present in the process.
92

Computational Fluid Dynamic analysis of Microbubble Drag Reduction Systems at High Reynolds Number

Goolcharan, John D 08 July 2016 (has links)
Microbubble drag reduction (MBDR) is an effective method to improve the efficiency of fluid systems. MBDR is a field that has been extensively studied in the past, and experimental values of up to 80% to 90% drag reduction have been obtained. The effectiveness and simplicity of MBDR makes it a viable method for real world applications, particularly in naval applications where it can reduce the drag between the surface of ships and the surrounding water. A two dimensional single phase model was created in ANSYS Fluent to effectively model the behavior of bubble laden flow over a flat plate. This model was used to analyze the effectiveness of MBDR based on the following factors: Reynolds number, types of gas injected, upstream flow velocity, upstream fluid type, density ratio, flow rate of injected gas, using air as the upstream injected fluid.
93

Database-Assisted Analysis and Design of Wind Loads on Rigid Buildings

Habte, Filmon Fesehaye 06 July 2016 (has links)
The turbulent nature of the wind flow coupled with additional turbulence created by the wind-building interaction result in highly non-uniform, fluctuating wind-loading on building envelopes. This is true even for simple rectangular symmetric buildings. Building codes and standards should reflect the information on which they are based as closely as possible, and this should be achieved without making the building codes too complicated and/or bulky. However, given the complexity of wind loading on low-rise buildings, its codification can be difficult, and it often entails significant inconsistencies. This required the development of alternative design methods, such as the Database-Assisted-Design (DAD) methodology, that can produce more accurate and risk-consistent estimates of wind loads or their effects. In this dissertation, the DAD methodology for rigid-structures has been further developed into a design tool capable of automatically helping to size member cross sections that closely meet codified strength and serviceability requirements. This was achieved by the integration of the wind engineering and structural engineering phases of designing for wind and gravity loads. Results obtained using this method showed DAD’s potential for practical use in structural design. Different methods of synthesizing aerodynamic and climatological data were investigated, and the effects of internal pressure in structural design were also studied in the context of DAD. This dissertation also addressed the issues of (i) insufficiently comprehensive aerodynamic databases for various types of building shapes, and (ii) the large volume (in size) of existing aerodynamic databases, that can significantly affect the extent to which the DAD methodology is used in engineering practice. This research is part of an initiative to renew the way we evaluate wind loads and perform designs. It is transformative insofar as it enables designs that are safe and economical owing to the risk-consistency inherent in DAD, meaning that enough structural muscle is provided to assure safe behavior, while fat is automatically eliminated in the interest of economy and CO2 footprint reduction.
94

Predicting Pressure Distribution Between Transfemoral Prosthetic Socket and Residual Limb Using Finite Element Analysis

Surapureddy, Rajesh 01 January 2014 (has links)
In this study, a non-linear Finite Element (FE) model was created and analyzed to determine the pressure distribution between the residual limb and the prosthetic socket of a transfemoral amputee. This analysis was performed in an attempt to develop a process allowing healthcare providers and engineers to simulate the fit and comfort of transfemoral prosthetics to reduce the number of re-fittings needed for the amputees. The analysis considered the effects of interference due to insertion of the limb into the prosthesis, referred to as donning, and also the effects due to the body weight of the amputee. A non-linear finite element static implicit analysis method was utilized. This analysis implemented multiple finite element techniques, including geometric non-linearity due to large deflections, non-linear contacts due to friction between the contact surfaces of the residual limb and the socket, and non-linear hyper-elastic material properties for the residual limb’s soft tissue. This non-linear static analysis was carried out in two time-steps. The first step involved solving the interference fit analysis to study the pre-stresses developed due to the effect of donning. The donning process results in soft tissue displacement to accommodate the internal geometry of the prosthesis. In the second load application time-step, an additional load of half the person’s body weight was applied to the femur. The maximum normal stress (contact pressure) of 84 kPa was observed due to the combined effect of the donning procedure and body weight application, comparable to the studies performed by other researchers. The procedure developed through this work can be used by future researchers and prosthetic designers in understanding how to better design transfemoral prosthesis.
95

Design and Control of a Two-Wheeled Robotic Walker

da Silva, Airton R., Jr. 07 November 2014 (has links)
This thesis presents the design, construction, and control of a two-wheeled inverted pendulum (TWIP) robotic walker prototype for assisting mobility-impaired users with balance and fall prevention. A conceptual model of the robotic walker is developed and used to illustrate the purpose of this study. A linearized mathematical model of the two-wheeled system is derived using Newtonian mechanics. A control strategy consisting of a decoupled LQR controller and three state variable controllers is developed to stabilize the platform and regulate its behavior with robust disturbance rejection performance. Simulation results reveal that the LQR controller is capable of stabilizing the platform and rejecting external disturbances while the state variable controllers simultaneously regulate the system’s position with smooth and minimum jerk control. A prototype for the two-wheeled system is fabricated and assembled followed by the implementation and tuning of the control algorithms responsible for stabilizing the prototype and regulating its position with optimal performance. Several experiments are conducted, confirming the ability of the decoupled LQR controller to robustly balance the platform while the state variable controllers regulate the platform’s position with smooth and minimum jerk control.
96

Topology Network Optimization of Facility Planning and Design Problems

Monga, Ravi Ratan Raj 29 October 2019 (has links)
The research attempts to provide a graphical theory-based approach to solve the facility layout problem. Which has generally been approached using Quadratic Assignment Problem (QAP) in the past, an algebraic method. It is a very complex problem and is part of the NP-Hard optimization class, because of the nonlinear quadratic objective function and (0,1) binary variables. The research is divided into three phases which together provide an optimal facility layout, block plan solution consisting of MHS (material handling solution) projected onto the block plan. In phase one, we solve for the position of departments in a facility based on flow and utility factor (weight for location). The position of all the departments is identified on the vertices of MPG (maximal planar graph), which maximizes the possibility of flow. We use named MPG produced in literature, throughout the research. The grouping of the department is achieved through GMAFLAD, a QSP (quadratic set packing) based optimizer. In Phase 2, the dual for the MPG’s is solved consisting of department location as per phase 1, to generate Voronoi graphs. These graphs are then, expanded by an ingenious parameter optimization formulation to achieve area fitting for individual cases. Optimization modeling software, Lingo17.0 is used for solving the parameter optimization for generating coordinates of the block plan. The plotting of coordinates for the block plan graphics is done via Autodesk inventor 2019. In phase 3, the solution for MHS is achieved using an RSMT (Rectilinear Steiner minimal tree) graph approach. The Voronoi seed coordinates produced through phase 2 results are computed by GeoSteiner package to generated the RSMT graph for projection onto the block plan (Also, done by Inventor 2019). The graphical method employed in this research, itself has complex and NP-hard problem segments in it, which have been relaxed to polynomial time complexity by fragmenting into groups and solving them in sections. Solving for MPG & RSMT are a class of NP-Hard problem, which have been restricted to N=32 here. Finally, to validate the research and its methodology a real-life case study of a shipyard building for the data set of PDVSA, Venezuela is performed and verified.
97

Finite Element Modeling of Delamination Damage in Carbon Fiber Laminates Subject to Low-Velocity Impact and Comparison with Experimental Impact Tests Using Nondestructive Vibrothermography Evaluation

Rodriguez, George, IV 01 June 2016 (has links)
Carbon fiber reinforced composites are utilized in many design applications where high strength, low weight, and/or high stiffness are required. While composite materials can provide high strength and stiffness-to-weight ratios, they are also more complicated to analyze due to their inhomogeneous nature. One important failure mode of composite structures is delamination. This failure mode is common when composite laminates are subject to impact loading. Various finite element methods for analyzing delamination exist. In this research, a modeling strategy based on contact tiebreak definitions in LS-DYNA®was used. A finite element model of a low-velocity impact event was created to predict delamination in a composite laminate. The resulting delamination relative size and shape was found to partially agree with analytical and experimental results for similar impact events, while the force-time plot agreed well with experimental results. A small difference in contact time in the simulation compared to experimental testing is likely due to the omission of composite failure modes other than delamination. Experimental impact testing and subsequent vibrothermography analysis showed delamination damage in locations shown in previous research. This confirmed the validity of vibrothermography as a nondestructive evaluation technique for analyzing post-impact delamination.
98

Manufacture of Complex Geometry Component for Advanced Material Stiffness

Bydalek, David Russell 01 March 2018 (has links)
The manufacture, laminate design, and modeling of a part with complex geometry are explored. The ultimate goal of the research is to produce a model that accurately predicts part stiffness. This is validated with experimental results of composite parts, which refine material properties for use in a final prototype part model. The secondary goal of this project is to explore manufacturing methods for improved manufacturability of the complex part. The manufacturing portion of the thesis and feedback into material model has incorporated a senior project team to perform research on manufacturing and create composite part to be used for experimental testing. The senior project was designed, led, and managed by the author with support from the committee chair. Finite element modeling was refined using data from coupon 3-point bend testing to improve estimates on material properties. These properties were fed into a prototype part model which predicted deflection of composite parts with different layups and materials. The results of the model were compared to experimental results from prototype part testing and 3rd party analysis. The results showed that an accurate mid-plane shell element model could be used to accurately predict deflection for 2 of 3 experimental parts. There are recommendations in the thesis to further validate the models and experimental testing.
99

Design of Structural Stand for High-Precision Optics Microscopy

Novell, Sara T 01 June 2020 (has links)
Lawrence Livermore National Lab (LLNL) is home to the National Ignition Facility (NIF), the world’s largest and most energetic laser. Each of the 192 beamlines contains dozens of large optics, which require offline damage inspection using large, raster-scanning microscopes. The primary microscope used to measure and characterize the optical damage sites has a precision level of 1 µm. Mounted in a class 100 clean room with a raised tile floor, the microscope is supported by a steel stand that structurally connects the microscope to the concrete ground. Due to ambient vibrations experienced in the system, the microscope is only able to reliably reach a 10-µm level of precision. As NIF’s technology advances, there is a need to both increase optic measurement throughput and to measure damage sites at a higher level of precision. As a result, there is to be another microscope mounted into another clean room lab at LLNL. To assure the microscope can meet its specified level of precision, the stand on which it is mounted was designed to meet the rigorous Environmental Vibrational Criteria standards, or VC curves. Through the collection of random vibrational data using accelerometers and Power Spectral Density (PSD) analysis, the stand was designed to meet the VC-C curve requirement of velocities below 12.5 µm/sec. Furthermore, the stand design was optimized to avoid resonance at common vibrational signatures throughout the frequency spectrum, placing its first natural frequency at a sufficiently high level to minimize amplification.
100

Semi-Active Damping for an Intelligent Adaptive Ankle Prosthesis

Lapre, Andrew K 01 January 2012 (has links) (PDF)
Modern lower limb prostheses are devices that replace missing limbs, making it possible for lower limb amputees to walk again. Most commercially available prosthetic limbs lack intelligence and passive adaptive capabilities, and none available can adapt on a step by step basis. Often, amputees experience a loss of terrain adaptability as well as stability, leaving the amputee with a severely altered gait. This work is focused on the development of a semi-active damping system for use in intelligent terrain adaptive ankle prostheses. The system designed consists of an optimized hydraulic cylinder with an electronic servo valve which throttles the hydraulic fluid flowing between the cylinder’s chambers, acting on the prosthesis joint with a moment arm in series with a carbon spring foot. This provides the capability to absorb energy during the amputees gait cycle in a controlled manner, effectively allowing the passive dynamic response to be greatly altered continuously by leveraging a small energy source. A virtual simulation of an amputee gait cycle with the adaptive semi-active ankle design revealed the potential to replicate adaptive abilities of the human ankle. The results showed very similarly that irregularities in amputee biomechanics can be greatly compensated for using semi-active damping.

Page generated in 0.1101 seconds