• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Field Installation of a Fully Instrumented Prototype Solar Concentrator System: Thermal and Photovoltaic Analysis

Muron, Aaron C. D. January 2013 (has links)
Concentrator photovoltaics (CPV) is one of the most promising renewable technologies owing to its high efficiency, scalability, low operating expense, and small environmental impact. However, there is much research and advancements to be made before CPV is established as a cost competitive energy technology. To this end, Morgan Solar has developed the Sun Simba, an innovative light weight and low cost CPV module. Under the “Advancing Photonics for Economical Concentration Systems” (APECS) project, outdoor CPV test and measurement systems were designed and constructed at the University of Ottawa and at Little Rock, CA. The performance and reliability of development stage Sun Simba modules installed at the University of Ottawa is assessed. The Little Rock test system was constructed for purposes of future comparison and assessment. To properly assess the performance, instrumentation and data acquisition systems to measure meterological parameters and the associated electrical performance are described and the long-term performance of Sun Simba modules installed at the University of Ottawa is summarized. A finite element model of a cell-on-carrier assembly was constructed to explore the parameter space of the carrier and suggest improvements in carrier design. The effect of carrier geometry, material choices, and convective boundary conditions and their influence on the cell efficiency is determined. The modelling results connected to the measured data is used to estimate the heat sinking capability of the second generation Sun Simba modules.
2

Segmented holographic spectrum splitting concentrator

Ayala P., Silvana, Vorndran, Shelby, Wu, Yuechen, Chrysler, Benjamin, Kostuk, Raymond K. 23 September 2016 (has links)
This paper presents a segmented parabolic concentrator employing holographic spectral filters that provide focusing and spectral bandwidth separation capability to the system. Strips of low band gap silicon photovoltaic (PV) cells are formed into a parabolic surface as shown by Holman et. al. [1]. The surface of the PV segments is covered with holographic elements formed in dichromated gelatin. The holographic elements are designed to transmit longer wavelengths to silicon cells, and to reflect short wavelength light towards a secondary collector where high-bandgap PV cells are mounted. The system can be optimized for different combinations of diffuse and direct solar illumination conditions for particular geographical locations by controlling the concentration ratio and filtering properties of the holographic elements. In addition, the reflectivity of the back contact of the silicon cells is used to increase the optical path length and light trapping. This potentially allows the use of thin film silicon for the low bandgap PV cell material. The optical design combines the focusing properties of the parabolic concentrator and the holographic element to control the concentration ratio and uniformity of the spectral distribution at the high bandgap cell location. The presentation concludes with a comparison of different spectrum splitting holographic filter materials for this application.
3

Two-junction holographic spectrum-splitting microconcentrating photovoltaic system

Wu, Yuechen, Kostuk, Raymond K. 17 February 2017 (has links)
Spectrum-splitting is a multijunction photovoltaic technology that can effectively improve the conversion efficiency and reduce the cost of photovoltaic systems. Microscale PV design integrates a group of microconcentrating photovoltaic (CPV) systems into an array. It retains the benefits of CPV and obtains other benefits such as a compact form, improved heat rejection capacity, and more versatile PV cell interconnect configurations. We describe the design and performance of a two-junction holographic spectrum-splitting micro-CPV system that uses GaAs wide bandgap and silicon narrow bandgap PV cells. The performance of the system is simulated with a nonsequential raytracing model and compared to the performance of the highest efficiency PV cell used in the micro-CPVarray. The results show that the proposed system reaches the conversion efficiency of 31.98% with a quantum concentration ratio of 14.41x on the GaAs cell and 0.75x on the silicon cell when illuminated with the direct AM1.5 spectrum. This system obtains an improvement over the best bandgap PV cell of 20.05%, and has an acceptance angle of +/- 6 deg allowing for tolerant tracking. (C) 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
4

Characterization and Performance Analysis of High Efficiency Solar Cells and Concentrating Photovoltaic Systems

Yandt, Mark 11 January 2012 (has links)
As part of the SUNRISE project (Semiconductors Using Nanostructures for Record Increases in Solar-cell Efficiency), high efficiency, III-V semiconductor, quantum-dot-enhanced, triple-junction solar cells designed and manufactured by Cyrium Technologies Inc. were integrated into OPEL Solar, MK-I, Fresnel-lens-based, 550x concentrating modules carried on a dual axis tracker. Over its first year of operation 1.8 MWh of AC electrical energy was exported to the grid. Measurements of the direct and indirect components of the insolation, as well as the spectral irradiance of light incident on the demonstrator in Ottawa, Canada are presented. The system efficiency is measured and compared to that predicted by a system model to identify loss mechanisms so that they can be minimized in future deployments.
5

Characterization and Performance Analysis of High Efficiency Solar Cells and Concentrating Photovoltaic Systems

Yandt, Mark January 2012 (has links)
As part of the SUNRISE project (Semiconductors Using Nanostructures for Record Increases in Solar-cell Efficiency), high efficiency, III-V semiconductor, quantum-dot-enhanced, triple-junction solar cells designed and manufactured by Cyrium Technologies Inc. were integrated into OPEL Solar, MK-I, Fresnel-lens-based, 550x concentrating modules carried on a dual axis tracker. Over its first year of operation 1.8 MWh of AC electrical energy was exported to the grid. Measurements of the direct and indirect components of the insolation, as well as the spectral irradiance of light incident on the demonstrator in Ottawa, Canada are presented. The system efficiency is measured and compared to that predicted by a system model to identify loss mechanisms so that they can be minimized in future deployments.
6

Three junction holographic micro-scale PV system

Wu, Yuechen, Vorndran, Shelby, Ayala Pelaez, Silvana, Kostuk, Raymond K. 23 September 2016 (has links)
In this work a spectrum splitting micro-scale concentrating PV system is evaluated to increase the conversion efficiency of flat panel PV systems. In this approach, the dispersed spectrum splitting concentration systems is scaled down to a small size and structured in an array. The spectrum splitting configuration allows the use of separate single bandgap PV cells that increase spectral overlap with the incident solar spectrum. This results in an overall increase in the spectral conversion efficiency of the resulting system. In addition other benefits of the micro-scale PV system are retained such reduced PV cell material requirements, more versatile interconnect configurations, and lower heat rejection requirements that can lead to a lower cost system. The system proposed in this work consists of two cascaded off-axis holograms in combination with a micro lens array, and three types of PV cells. An aspherical lens design is made to minimize the dispersion so that higher concentration ratios can be achieved for a three-junction system. An analysis methodology is also developed to determine the optical efficiency of the resulting system, the characteristics of the dispersed spectrum, and the overall system conversion efficiency for a combination of three types of PV cells.
7

Instrumentation Development for Site-Specific Prediction of Spectral Effects on Concentrated Photovoltaic System Performance

Tatsiankou, Viktar January 2014 (has links)
The description of a novel device to measure the spectral direct normal irradiance is presented. The solar spectral irradiance meter (SSIM) was designed at the University of Ottawa as a cost-effective alternative to a prohibitively expensive field spectroradiometer (FSR). The latter measures highly-varying and location-dependent solar spectrum, which is essential for accurate characterization of a concentrating photovoltaic system’s performance. The SSIM measures solar spectral irradiance in several narrow wavelength bands with a combination of photodiodes with integrated interference filters. This device performs spectral measurements at a fraction of the cost of a FSR, but additional post-processing is required to deduce the solar spectrum. The model was developed to take the SSIM’s inputs and reconstruct the solar spectrum in 280–4000 nm range. It resolves major atmospheric processes, such as air mass changes, Rayleigh scattering, aerosol extinction, ozone and water vapour absorptions. The SSIM was installed at the University of Ottawa’s CPV testing facility in September, 2013. The device gathered six months of data from October, 2013 to March, 2014. The mean difference between the SSIM and the Eppley pyrheliometer was within ±1.5% for cloudless periods in October, 2013. However, interference filter degradation and condensation negatively affected the performance of the SSIM. Future design changes will improve the longterm reliability of the next generation SSIMs.

Page generated in 0.1076 seconds