• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Magnetic Manipulation and Assembly of Multi-component Particle Suspensions

Erb, Randall Morgan January 2009 (has links)
<p>This thesis will investigate previously unexplored concepts in magnetic manipulation including controlling the assembly of magnetic and nonmagnetic particles either in bulk fluid or near a substrate. Both uniform glass interfaces and substrates with magnetic microstructures are considered. The main goal of this work is to discuss new strategies for implementing magnetic assembly systems that are capable of exquisitely controlling the positions and orientations of single-component as well as multi-component particle suspensions, including both magnetic and non-magnetic particles. This work primarily focuses on controlling spherical particles; however, there are also several demonstrations of controlling anisotropically shaped particles, such as microrods and Janus colloids. </p><p> Throughout this work, both conventional magnetophoresis and inverse magnetophoresis techniques were employed, the latter relying on ferrofluid, i.e. a suspension of magnetic nanoparticles in a nonmagnetic carrier fluid, which provides a strong magnetic permeability in the surrounding fluid in order to manipulate effectively non-magnetic materials. In each system it was found that the dimensionless ratio between magnetic energy and thermal energy could be successfully used to describe the degree of control over the positions and orientations of the particles. One general conclusion drawn from this work is that the ferrofluid can be modeled with a bulk effective permeability for length scales on the order of 100 nm. This greatly reduces modeling requirements since ferrofluid is a complex collection of discrete nanoparticles, and not a homogenous fluid. It was discovered that the effective magnetic permeability was often much larger than expected, and this effect was attributed to particle aggregation which is inherent in these systems. In nearly all cases, these interactions caused the ferrofluid to behave as though the nanoparticles were clustered with an effective diameter about twice the real diameter.</p><p> The principle purpose of this thesis is to present novel systems which offer the ability to manipulate and orient multi-component spherical or anisotropic particle suspensions near surfaces or in the bulk fluid. First, a novel chip-based technique for transport and separation of magnetic microparticles is discussed. Then, the manipulation of magnetic nanoparticles, for which Brownian diffusion is a significant factor, is explored and modeled. Parallel systems of nonmagnetic particles suspended in ferrofluid are also considered in the context of forming steady state concentration gradients. Next, systems of particles interacting with planar glass interfaces are analyzed, modeled, and a novel application is developed to study the interactions between antigen-antibody pairs by using the self-repulsion of non-magnetic beads away from a ferrofluid/glass interface. This thesis also focuses on studying the ability to manipulate particles in the bulk fluid. First, simple dipole-dipole aggregation phenomenon is studied in suspensions of both nonmagnetic polystyrene particles and endothelial cells. For the sizes of particles considered in these studies, currently accepted diffusion limited aggregation models could not explain the observed behavior, and a new theory was proposed. Next, this thesis analyzed the interactions that exist in multi-component magnetic and nonmagnetic particle suspensions, which led to a variety of novel and interesting colloidal assemblies. This thesis finally discusses the manipulation of anisotropic particles, namely, the ability to control the orientation of particles including both aligning nonmagnetic rods in ferrofluid as well as achieving near-holonomic control of Janus particles with optomagnetic traps. General conclusions of the viability of these techniques are outlined and future studies are proposed in the final chapter.</p> / Dissertation
2

Séchage microfluidique de fluides complexes : champs de concentration, diffusion collective et mesure in situ de contraintes / Drying of complex fluids in microfluidic geometries : concentration gradients, collective diffusion and in situ stress measurements

Bouchaudy, Anne 26 October 2018 (has links)
Etudier le séchage est un moyen original de caractériser les propriétés de fluides complexes. Cette technique permet de concentrer continûment des fluides : d'un état dilué à un état sec. A l'échelle microfluidique, la manipulation, les observations et les processus qui entrent en jeu sont simplifiés. Ce travail de thèse s'attache à décrire le séchage de ces fluides et plus particulièrement le cas de dispersions colloïdales. Ces travaux présentent deux méthodes pour étudier l'extraction du solvant d'un fluide à l'échelle microfluidique : la micropervaporation et la goutte confinée. Ces techniques ont notamment permis de réaliser des estimations précises de coefficients de diffusion collective sur toute la gamme de concentrations pour un mélange eau/glycérol et pour une dispersion colloïdale de nanoparticules de silice chargées. Par ailleurs, le séchage induit des contraintes mécaniques conséquentes. Ces contraintes peuvent générer des déformations importantes, des phénomènes de délamination ou de fracturation du matériau solidifié. Une méthode originale de mesure in situ de contraintes a été mise en place pendant ces travaux. Les mesures réalisées avec une dispersion colloïdale modèle permettent de mettre en évidence expérimentalement l'apparition de contraintes mécaniques au moment de la transition sol/gel de la dispersion. L'augmentation de la contrainte est ensuite associée au séchage d'un gel poroélastique. / Drying complex fluids is an original technique to study their properties. Solvent extraction enables the continuous concentration of fluids from a dilute to a solid state. The use of the microfluidic scale allows one to limit side effects and simplify experiments, observations and modeling. This project mainly describes the drying of colloidal dispersions in two confined geometries: microfluidic channels and confined droplets between two plates. With these two techniques, we estimate collective diffusion for a water/glycerol mixture and a model dispersion of charged silica nanoparticles over the whole concentration range. Moreover, the drying of complex fluids often induces mechanical stresses which are the root for deformation, delamination phenomena and cracks. We developed an original technique to measure these stresses in situ. For a model colloidal dispersion, we evidenced experimentally that these forces arise from a liquid to solid state transition. The increase of these stresses is then associated with the drying of a poroelastic gel.
3

A Study of Channelling Behaviour in Batch Sedimentation.

Kurt, Nilufer, nilf_k@yahoo.com.au January 2006 (has links)
Batch sedimentation is a method that enables us to understand the mechanism of compaction and compression of sedimenting slurry. However, batch settling behaviour is a very complex phenomenon that is not easily described fully by a mathematical model. This causes unrealistically large empirical calculations when the thickener size estimations are required. Channelling, reverse concentration gradients and the initial concentration of the slurry have large effects on batch settling. Existing procedures do not provide clear relationships involving these three significant variables. In this study, batch sedimentation phenomena are examined in detail and possible explanations are given to clarify the complex behaviour using recent theories. Modern research has shown that channelling is an unwanted formation because channels can change the concentration at the bottom and top of the bed by carrying a great amount of flocs upwards. Batch sedimentation tests were performed using flocculated slurry of Calcium Carbonate at various initial concentrations such as 250 g/l, 500 g/l, 750 g/l and 1000 g/l to observe channelling and reverse concentration gradients. Flux plots for the batch system reveal behaviour which can be attributed to the upward flow of solids. In addition, photographic methods were used to observe settling processes, channelling mechanisms and flocs in the channels. One of the purposes of this work was to examine the phenomenological solid-liquid separation theory of Buscall and White (1987), which employs the material properties of the local volume fraction, compressive yield stress Py ()ö and hindered settling function R()ö to identify the material behaviour in batch sedimentation. Stepped-pressure filtration and batch settling tests were used to measure the material characteristics for the flocculated CaCO3 suspension. Experimental data were demonstrated using Height versus Time and Height versus Concentration graphs and displayed the possible region of reverse concentration gradients and channelling in the settling bed. Mathematical predictions adopted from Usher (2002) were performed employing material characteristics of the material and graphical documentations were presented. The results of mathematical predictions were compared to the experimental results and the modes of sedimentation explained by Lester et al. (2005). Fundamental theoretical models and experimental observations highlight that the main driving force for channelling is the high-pressure gradient at the bottom of the bed and the most important factors that cause channelling are high initial concentration of slurry and settling time. The predictions also show that the material and flocculant used for the batch settling tests demonstrate important effect on the settling process. The knowledge and information gained from this study is valuable to maximize the thickening process.
4

Spatially and Temporally Resolving Concentration and Temperature Profiles within a Fresh and a Thermally-Aged Monolith Catalyst

Shakir, Osama January 2008 (has links)
The ability to resolve reactions within a monolith spatially and temporally is key in developing reliable kinetic models, as well as in validating proposed reaction mechanisms. In this work, two techniques, IR-thermography and spatially-resolved capillary inlet mass spectrometry (SpaciMS), were used to measure temperature and gas-phase concentrations. Specifically, they were applied to monitor the axial distribution of temperature and concentration profiles during propylene oxidation over a Pt/Al2O3 monolith-supported catalyst. Also, the effect of thermally aging the catalyst on the temperature and concentration patterns observed was investigated. During temperature programmed oxidation experiments, the data show that conversion of propylene began at the outlet, and a reaction front generated at the rear of the monolith traveled upstream, as a moving reaction zone, thereby creating a temperature wave pattern since the reaction is exothermic. The conversion was always complete downstream of this reaction zone at any point along the catalyst. When the reactor was cooled, the conversion of propylene started to drop, accompanied by a similar temperature wave pattern that traveled in the opposite direction (from upstream to downstream) and was attributed to a phenomenon known as wrong-way behavior. Finally, thermally aging the catalyst led to a slower and more localized moving hot zone.
5

Spatially and Temporally Resolving Concentration and Temperature Profiles within a Fresh and a Thermally-Aged Monolith Catalyst

Shakir, Osama January 2008 (has links)
The ability to resolve reactions within a monolith spatially and temporally is key in developing reliable kinetic models, as well as in validating proposed reaction mechanisms. In this work, two techniques, IR-thermography and spatially-resolved capillary inlet mass spectrometry (SpaciMS), were used to measure temperature and gas-phase concentrations. Specifically, they were applied to monitor the axial distribution of temperature and concentration profiles during propylene oxidation over a Pt/Al2O3 monolith-supported catalyst. Also, the effect of thermally aging the catalyst on the temperature and concentration patterns observed was investigated. During temperature programmed oxidation experiments, the data show that conversion of propylene began at the outlet, and a reaction front generated at the rear of the monolith traveled upstream, as a moving reaction zone, thereby creating a temperature wave pattern since the reaction is exothermic. The conversion was always complete downstream of this reaction zone at any point along the catalyst. When the reactor was cooled, the conversion of propylene started to drop, accompanied by a similar temperature wave pattern that traveled in the opposite direction (from upstream to downstream) and was attributed to a phenomenon known as wrong-way behavior. Finally, thermally aging the catalyst led to a slower and more localized moving hot zone.
6

A Numerical Analysis of the Influence of Korteweg Stresses on the Flow and Mixing of Miscible Fluids

Wilson, Raymond Gary 07 April 2004 (has links)
No description available.
7

Development of hydrophobic/superhydrophobic anti-fouling photopolymer coatings for PVC reactor / Développement des revêtements polymères anti-encroutant de type hydrophobe/superhydrophobe

El Fouhaili, Bandar 04 February 2014 (has links)
Lors de la polymérisation en suspension du chlorure de vinyle, il se forme sur les parois un dépôt de polychlorure de vinyle (PVC). Ce phénomène, nommé encroûtement, génère des problèmes car il limite la production de PVC et affecte la qualité du produit final. Dans ce contexte, un projet FUI (Fond Unique Interministériel) intitulé «Ecoating», a été financé dans le cadre d’une collaboration entre plusieurs partenaires industriels et universitaires (INEOS ChlorVinyls, Mäder Research, Avenir Group, LPIM, ESPCI-ParisTech). Deux thèses ont vu le jour au LPIM, avec pour but de développer un revêtement (photo)polymère aux propriétés anti-encroûtement durables qui permettrait d’améliorer la qualité du PVC produit, d’augmenter les quantités produites et ainsi d’améliorer la compétitivité des usines de PVC. Cette thèse s’inscrit dans le développement d’un vernis photopolymère répondant au cahier des charges. Pour éviter l’encroûtement des réacteurs, il est nécessaire de stopper une étape du mécanisme d’encroûtement comme l'adsorption sur les parois du réacteur d’un copolymère nommé Acvagen Graft Copolymer (AGC). Ce copolymère est très actif dans le phénomène d’encroûtement (site de nucléation) et se trouve principalement dans la phase aqueuse du milieu réactionnel. La stratégie de recherche élaborée dans ce projet a été basée sur le développement d'un revêtement photopolymère présentant une faible affinité pour l'eau et devant adhérer à la surface des réacteurs pour éviter la formation de croûte. Les polymères à base de fluoroacrylates ont été les premiers candidats choisis dans cette étude du fait que leurs propriétés exceptionnelles (faible énergie de surface, stabilité chimique et haute hydrophobicité...) pouvaient éviter l'adsorption de l'AGC sur les parois du réacteur, et par conséquent le développement de la croûte. Une recherche bibliographique a été réalisée pour comprendre le comportement particulier de ces molécules qui migrent vers la surface du film et s’organisent en surface pour donner des surfaces hydrophobes. Des mélanges de résines fluoroacryliques modèles ont été testés pour évaluer le caractère hydrophobe du revêtement, comprendre la migration des molécules de fluor vers l’interface en fonction de la nature de substrat et aussi déterminer l’influence de l’ajout d’additifs fluorés au mélange sur les propriétés globales du film. Cette étude nous a permis de comprendre l’influence de l’additif fluoré sur les propriétés chimiques et physiques du film. À l’échelle du laboratoire des tests d’immersion de ces revêtements déposés sur l’acier inoxydable ont étés réalisés dans l’eau chaude (80°C) afin de caractériser leur caractère hydrophobe en fonction du vieillissement dans l’eau chaude ainsi que l’adhésion du film au substrat. Nous avons observé une diminution de l'hydrophobicité de la surface du film au cours du temps lors d’une immersion. [...] / Our scientific approach has explored different strategies to develop a durable UV-cured coating with antifouling properties to prevent the crust formation. Firstly, the potential of fluoroacrylate photocurable coatings was exhaustively investigated. Indeed, their outstanding properties (low surface energy, chemical stability and high hydrophobicity...) could limit the adsorption of the AGC on the reactor walls and further encrusting. A bibliographic research highlighted the behavior of fluorinated monomers on film surface and the parameters affecting the hydrophobic properties. Different fluorinated monomers were selected. At low concentration, they provide hydrophobic surfaces on 316L stainless steel, the reference substrate. However, a decrease of the films surface hydrophobicity in hot water was observed with time, and was attributed to a disorganization of the fluorinated chains on the coating surface. An optimization of the amount of fluoroacrylate monomer was performed by confocal Raman microscopy (CRM) to promote the fluorinated chains stability on the surface before and after immersion in hot water at 80°C. The beneficial effect was found maximal at a concentration ranging from 1 to 1.8 wt%. However, even after this optimization, a decrease of the film surface hydrophobicity was observed for increased immersion time in hot water. Therefore, optimized fluoroacrylate monomer concentration was combined with alternated thermal/immersion post-treatment and has conducted to more stable photocured films. This result was attributed to a rigidification of the fluorinated chains on the film surface limiting thus, the extent of their disorganization. After this study realized at a laboratory scale, we tested the photocured coating in the VCM pilot reactor. A surface cleaning, an increase of the stainless steel roughness by shot blasting and the use of alkoxysilanes as coupling agents were implemented in order to enhance the adhesion properties of the photopolymer film on stainless steel. In addition, the use of a fluorinated monomer containing a heteroatom improved the rigidification when associated with the alternated thermal/immersion post-treatment. The crust formation was limited during four successive polymerizations in the VCM pilot reactor. A durable anti-fouling UV-coating could be not obtained due to some swelling phenomena resulting from the lack of coating adhesion or some abrasion occurring from small PVC pellets during the PVC polymerization.A second part of this project was dedicated to superhydrophobic coatings. Indeed, reducing interaction with water should lead to a better protection of the substrate. A literature review on the superhydrophobic surfaces has shown that the contact with hot water generally strongly affects their antiwetting properties and induces a large contact angle decrease. [...]

Page generated in 0.1715 seconds