Spelling suggestions: "subject:"concentration.comparison principle"" "subject:"concentrations.compared principle""
1 |
Multiplicidade de Soluções para Problemas Elípticos Semilineares Envolvendo o Expoente Crítico de SobolevPrazeres, Disson Soares dos 04 August 2010 (has links)
Made available in DSpace on 2015-05-15T11:46:26Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 549935 bytes, checksum: f7562c326b5af177cb80a71a184aa0c9 (MD5)
Previous issue date: 2010-08-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this dissertation, we study the multiplicity of solutions for the following class of semilinear elliptic problems involving the critical Sobolev exponent, ---u = - juj2---2 u + f (x; u) ; x 2 e u = 0; x 2 @ ; where N - 3, - RN is a smooth and bounded domain, - is a positive real parameter
and 2- = 2N= (N - 2) is the critical Sobolev exponent. In obtaining our result, we use variational methods, such as, minimax theorems, Lusternik-Schnirelman theorems, as well
as, concentration-compactness lemma. / Nesta dissertação, estudamos a multiplicidade de soluções para a seguinte classe de
problemas elípticos semilineares envolvendo o expoente crítico de Sobolev, --u = - juj2---2 u + f (x; u) ; x 2
e u (x) = 0; x 2 @ ; onde N - 3, - RN é um dominio suave e limitado, - é um parâmetro real positivo e 2* = 2N= (N - 2) é o expoente crítico de Sobolev. Na prova dos resultados, usamos métodos variacionais, tais como, teoremas do tipo minimax, teoremas do tipo Lusternik-Schnirelman, bem como, lemas de concentração-compacidade.
|
2 |
Méthodes variationnelles et topologiques pour l'étude de modèles non liénaires issus de la mécanique relativiste / Variational and topological methods for the study of nonlinear models from relativistic quantum mechanics.Le Treust, Loïc 05 July 2013 (has links)
Cette thèse porte sur l'étude de modèles non linéaires issus de la mécanique quantique relativiste.Dans la première partie, nous démontrons à l'aide d'une méthode de tir l'existence d'une infinité de solutions d'équations de Dirac non linéaires provenant d'un modèle de hadrons et d'un modèle de la physique des noyaux.Dans la seconde partie, nous prouvons par des méthodes variationnelles l'existence d'un état fondamental et d'états excités pour deux modèles de la physique des hadrons. Par la suite, nous étudions la transition de phase reliant les deux modèles grâce à la Gamma-convergence.La dernière partie est consacrée à l'étude d'un autre modèle de hadrons dans lequel les fonctions d'onde des quarks sont parfaitement localisées. Nous énonçons quelques résultats préliminaires que nous avons obtenus. / This thesis is devoted to the study of nonlinear models from relativistic quantum mechanics.In the first part, we show thanks to a shooting method, the existence of infinitely many solutions of nonlinear Dirac equations of two models from the physics of hadrons and the physics of the nucleus.In the second part, we prove thanks to variational methods the existence of a ground state and excited states for two models of the physics of hadrons. Next, we study the phase transition which links the models thanks to the $\Gamma$-convergence.The last part is devoted to the study of another model from the physics of hadrons in which the wave functions are perfectly confined. We give some preliminary results.
|
Page generated in 0.1064 seconds