• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 30
  • 26
  • 26
  • 26
  • 26
  • 26
  • 26
  • 26
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 343
  • 343
  • 152
  • 82
  • 62
  • 62
  • 61
  • 51
  • 42
  • 41
  • 40
  • 36
  • 31
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Fracture Energy And Process Zone In Plain Concrete Beams (An Experimental Study Including Acoustic Emission Technique)

Muralidhara, S 10 1900 (has links) (PDF)
Concrete, which was hitherto considered as a brittle material, has shown much better softening behavior after the post peak load than anticipated. This behavior of concrete did put the researchers in a quandary, whether to categorize concrete under brittle materials or not. Consequently concrete has been called a quasi-brittle material. Fracture mechanics concepts like Linear elastic fracture mechanics (LEFM) and Plastic limit analysis applicable to both brittle and ductile materials have been applied to concrete to characterize the fracture behavior. Because of quasi-brittle nature of concrete, which lies between ductile and brittle response and due to the presence of process zone ahead of crack/notch tip instead of a plastic zone, it is found that non-linear fracture mechanics (NLFM) principles are more suitable than linear elastic fracture mechanics (LEFM) principles to characterize fracture behavior. Fracture energy, fracture process zone (FPZ) size and the behavior of concrete during fracture process are the fracture characteristics, which are at the forefront of research on concrete fracture. Another important output from the research on concrete fracture has been the size effect. Numerous investigations, through mathematical modeling and experiments, have been carried out and reported in literature on the effect of size on the strength of concrete and fracture energy. Identification of the sources of size effect is of prime importance to arrive at a clear analytical model, which gives a comprehensive insight into the size effect. With the support of an unambiguous theory, it is possible to incorporate the size effects into codes of practices of concrete design. However, the theories put forth to describe the size effect do not seem to follow acceptable regression. After introduction in Chapter-1 and literature survey in Chapter-2, Chapter-3 details the study on size effect through three point bend (TPB) tests on 3D geometrically similar specimens. Fracture behavior of beams with smaller process zone size in relation to ligament dimension approaches LEFM. The fracture energy obtained from such beams is said to be size independent. In the current work Size effect law (Bazant et al. 1987) is used on beams geometrically similar in three dimensions with the depth of the largest beam being equal to 750mm, and size independent fracture energy G Bf is obtained. In literature very few results are available on the results obtained from testing geometrically similar beams in three dimensions and with such large depth. In the current thesis the results from size effect tests yielded average fracture energy of 232 N/m. Generally the fracture energies obtained from 2D-geometrically similar specimens are in the range of 60-70 N/m as could be seen in literature. From 3D-geometrically similar specimens, the fracture energies are higher. The reason is increased peak load, could be due to increased width. The RILEM fracture energy Gf , determined from TPB tests, is said to be size dependent. The assumption made in the work of fracture is that the total strain energy is utilized for the fracture of the specimen. The fracture energy is proportional to the size of the FPZ, it also implies that FPZ size increases with increase in (W−a) of beam. This also means that FPZ is proportional to the depth W for a given notch to depth ratio, because for a given notch/depth, (W−a) which is also W(1 − a ) is proportional to W`because (1 − a ) is a constant. WWThis corroborates the fact that fracture energy increases with size. Interestingly, the same conclusion has been drawn by Abdalla & Karihaloo (2006). They have plotted a curve relating fracture process zone length and overall depth the beam. In the present study a new method namely Fracture energy release rate method is suggested. In the new method the plot of Gf / (W−a) versus (W−a) is obtained from a set of experimental results. The plot is found to follow power law and showed almost constant value of Gf / (W−a) at larger ligament lengths. This means that fracture energy reaches a constant value at large ligament lengths reaffirming that the fracture energy from very large specimen is size independent. The new method is verified for the data from literature and is found to give consistent results. In a quasi-brittle material such as concrete, a fracture process zone forms ahead of a pre-existing crack (notch) tip before the crack propagates from the tip. The process zone contains a scatter of micro-cracks, which coalesce into one or more macro-cracks, which eventually lead to fracture. These micro-cracks and macro-cracks release stresses in the form of acoustic waves having different amplitudes. Each micro or macro crack formation is called an acoustic emission (AE) event. Through AE technique it is possible to locate the positions of AE events. The zone containing these AE events is termed the fracture process zone (FPZ). In Chapter-4, a study on the evolution of fracture process zone is made using AE technique. In the AE study, the fracture process zone is seen as a region with a lot of acoustic emission event locations. Instead of the amplitudes of the events, the absolute AE energy is used to quantify the size of the process zone at various loading stages. It has been shown that the continuous activities during the evolution of fracture process zone correspond to the formation of FPZ, the size of which is quantified based on the density of AE events and AE energy. The total AE energy released in the zone is found to be about 78% of the total AE energy released and this is viewed as possible FPZ. The result reasonably supports the conclusion, from Otsuka and Date (2000) who tested compact tension specimens, that zone over which AE energy is released is about 95% can be regarded as the fracture process zone. As pointed out earlier, among the fracture characteristics, the determination of fracture energy, which is size independent, is the main concern of research fraternity. Kai Duan et al. (2003) have assumed a bi-linear variation of local fracture energy in the boundary effect model (BEM) to showcase the size effect due to proximity of FPZ to the specimen back boundary. In fact the local fracture energy is shown to be constant away from boundary and reducing while approaching the specimen back boundary. The constant local fracture energy is quantified as size independent fracture energy. A relationship between Gf , size independent fracture energy GF , un-cracked ligament length and transition ligament length was developed in the form of equations. In the proposed method the transition ligament length al is taken from the plot of histograms of energy of AE events plotted over the un-cracked ligament. The value of GF is calculated by solving these over-determined equations using the RILEM fracture energies obtained from TPB tests. In chapter-5 a new method involving BEM and AE techniques is presented. The histogram of energy of AE events along the un-cracked ligament, which incidentally matches in pattern with the local fracture energy distribution, assumed by Kai Duan et al. (2003), along the un-cracked ligament, is used to obtain the value of GF , of course using the same equations from BEM developed by Kai Duan et al. (2003). A critical observation of the histogram of energy of AE events, described in the previous chapter, showed a declining trend of AE event pattern towards the notch tip also in addition to the one towards the specimen back boundary. The pattern of AE energy distribution suggests a tri-linear rather than bi-linear local fracture energy distribution over un-cracked ligament as given in BEM. Accordingly in Chapter-6, GF is obtained from a tri-linear model, which is an improved bi-linear hybrid model, after developing expressions relating Gf , GF , (W−a) with two transition ligament lengths al and blon both sides. The values of Gf , and GF from both bi-linear hybrid method and tri-linear method are tabulated and compared. In addition to GF , the length of FPZ is estimated from the tri-linear model and compared with the values obtained from softening beam model (SBM) by Ananthan et al. (1990). There seems to be a good agreement between the results. A comparative study of size independent fracture energies obtained from the methods described in the previous chapters is made. The fracture process in concrete is another interesting topic for research. Due to heterogeneity, the fracture process is a blend of complex activities. AE technique serves as an effective tool to qualitatively describe the fracture process through a damage parameter called b-value. In the Gutenberg-Richter empirical relationship log 10N=a−bM, the constant ‘b’ is called the b-value and is the log linear slope of frequency-magnitude distribution. Fault rupture inside earth’s crust and failure process in concrete are analogous. The b-value, is calculated conventionally till now, based on amplitude of AE data from concrete specimens, and is used to describe the damage process. Further, sampling size of event group is found to influence the calculated b-value from the conventional method, as pointed out by Colombo et al. (2003). Hence standardization of event group size, used in the statistical analysis while calculating b-value, should be based on some logical assumption, to bring consistency into analytical study on b-value. In Chapter-7, a methodology has been suggested to determine the b-value from AE energy and its utilization to quantify fracture process zone length. The event group is chosen based on clusters of energy or quanta as named in the thesis. Quanta conform to the damage stages and justify well their use in the determination of the b-value, apparently a damage parameter and also FPZ length. The results obtained on the basis of quanta agree well with the earlier results.
332

Studies On Fatigue Crack Propagation In Cementitious Materials : A Dimensional Analysis Approach

Ray, Sonalisa 10 1900 (has links) (PDF)
Crack propagation in structures when subjected to fatigue loading, follows three different phases namely - short crack growth, stable crack growth and unstable crack growth. Accurate fatigue life prediction demands the consideration of every crack propagation phase rather than only the stable crack growth stage. Further, the use of existing crack growth laws in structures with small cracks under-predicts the growth rate compared to experimentally observed ones, thereby leading to an unsafe design and keeping the structure in a potentially dangerous state. In the present work, an attempt is made to establish fatigue crack propagation laws for plain concrete, reinforced concrete and concrete-concrete jointed interfaces from first principles using the concepts of dimensional analysis and self-similarity. Different crack growth laws are proposed to understand the behavior in each of the three regimes of the fatigue crack growth curve. Important crack growth characterizing material and geometrical parameters for each zone are included in the proposed analytical models. In real life applications to structures, the amplitude of cyclic loading rarely remains constant and is subjected to a wide spectrum of load amplitudes. Furthermore, the crack growth behavior changes in the presence of high amplitude load spikes within a constant amplitude history and this is incorporated in the model formulation. Using scaling laws, an improved understanding of the scaling behavior on different parameters is achieved. The models describing different regimes of crack propagation are finally unified to obtain the entire crack growth curve and compute the total fatigue life. In addition, crack growth analysis is performed for a reinforced concrete member by modifying the model derived for plain concrete in the Paris regime. Energy dissipation occurring due to shake-down phenomenon in steel reinforcement is addressed. The bond-slip mechanism which is of serious concern in reinforced concrete members is included in the study and a method is proposed for the prediction of residual moment carrying capacity as a function of relative crack depth. The application of the proposed analytical model in the computation of fatigue crack growth is demonstrated on three practical problems – beam in flexure, concrete arch bridge and a patch repaired beam. Through a sensitivity study, the influence of different parameters on the crack growth behavior is highlighted.
333

Structural Behaviour of Self Consolidating Steel Fiber Reinforced Concrete Beams

Cohen, Michael I. January 2012 (has links)
When subjected to a combination of moment and shear force, a reinforced concrete (RC) beam with either little or no transverse reinforcement can fail in shear before reaching its full flexural strength. This type of failure is sudden in nature and usually disastrous because it does not give sufficient warning prior to collapse. To prevent this type of shear failure, reinforced concrete beams are traditionally reinforced with stirrups. However, the use of stirrups is not always cost effective since it increases labor costs, and can make casting concrete difficult in situations where closely-spaced stirrups are required. The use of steel fiber reinforced concrete (SFRC) could be considered as a potential alternative to the use of traditional shear reinforcement. Concrete is very weak and brittle in tension, SFRC transforms this behaviour and improves the diagonal tension capacity of concrete and thus can result in significant enhancements in shear capacity. However, one of the drawbacks associated with SFRC is that the addition of fibers to a regular concrete mix can cause problems in workability. The use of self-consolidating concrete (SCC) is an innovative solution to this problem and can result in improved workability when fibers are added to the mix. The thesis presents the experimental results from tests on twelve slender self-consolidating fiber reinforced concrete (SCFRC) beams tested under four-point loading. The results demonstrate the combined use of SCC and steel fibers can improve the shear resistance of reinforced concrete beams, enhance crack control and can promote flexural ductility. Despite extensive research, there is a lack of accurate and reliable design guidelines for the use of SFRC in beams. This study presents a rational model which can accurately predict the shear resistance of steel fiber reinforced concrete beams. The thesis also proposes a safe and reliable equation which can be used for the shear design of SFRC beams.
334

Most nad místní komunikací a potokem / Bridge over a local road and a brook

Švancara, Marek January 2020 (has links)
The topic o thlis thesis is design of the structure of a bridge. The beam structure is chosen from three variants of the solution, the structure is formed by a bracket above the pillars and prepared prestressed beams. Various construction procedures have been verified and assessed for the serviceability and load-bearing limit states according to the applicable standards and regulations. Drawing documentation and static calculation are processed.
335

[pt] AVALIAÇÃO DE MECANISMOS DE TRANSFERÊNCIA DA FORÇA CORTANTE E RESISTÊNCIA DE VIGAS DE CONCRETO REFORÇADO COM BARRAS DE FIBRA DE VIDRO / [en] EVALUATION OF SHEAR TRANSFER MECHANISMS AND STRENGTH OF GFRP REINFORCED CONCRETE BEAMS

DANIELLE DUQUE ESTRADA PACHECO 10 October 2019 (has links)
[pt] Este trabalho tem como objetivo avaliar a resistência à força cortante de vigas de concreto reforçado com barras de fibras de vidro e investigar a contribuição dos diferentes mecanismos de transferência do esforço cortante para a resistência final da viga. Um programa experimental foi conduzido, incluindo ensaios para: caracterização do material, para avaliar o efeito de pino, para avaliar o engrenamento dos agregados e, por fim, ensaios de flexão de quatro pontos em vigas. Diferentes parâmetros foram investigados, como a quantidade de barras longitudinais para o efeito de pino, dimensão máxima do agregado graúdo para engrenamento dos agregados e a presença de estribos para os ensaios de vigas. O monitoramento do desenvolvimento da fissura crítica foi realizado com auxílio de correlação de imagem digital (digital image correlation, DIC, em inglês). Os resultados mostraram que não foi evidenciada diferença no comportamento de efeito de pino e de engrenamento dos agregados através dos ensaios realizados. Para os ensaios de vigas, observou-se que todos os espécimes apresentaram ruptura por tração da diagonal crítica e, para vigas sem estribos, a ação do efeito de pino pareceu contribuir significativamente para a resistência ao cisalhamento após a fissura, quando a carga diminui e as deflexões aumentam, resultado do menor engrenamento dos agregados à medida que a fissura se abre. Foi observado que a presença de estribos aumentou em até três vezes a resistência ao cortante das vigas ensaiadas e que houve ruptura do estribo na parte da dobra. / [en] This work aims to evaluate the shear strength of reinforced concrete beams with glass fiber reinforced polymer bars and to investigate qualitatively the contribution of the different shear transfer mechanisms to the final strength of the beam. An experimental program was conducted, including material characterization, dowel action tests, push-off tests, and finally, four-point bending tests on beams. Different parameters were investigated, such as the number of longitudinal bars for dowel action effect, maximum size of the coarse aggregate for aggregate interlock and the presence of stirrups for the beam tests. The monitoring of the development of the critical crack was performed with the aid of digital image correlation (DIC). The results showed that there was no difference in the behavior of the dowel action effect and the aggregate interlock through the tests performed. For beam tests, it was observed that all the specimens exhibited a concrete diagonal tension failure and for beams without stirrups, dowel action seemed to provide significant contribution to the shear strength after the crack, when the load reduces and the deflections increases, resulting from the loss of aggregate interlock as the crack opens. It was also observed that the presence of stirrups increased up to three times the shear strength of the beams tested and that there was rupture of the stirrup at the bent region.
336

Behaviour of continuous concrete deep beams reinforced with GFRP bars

Shalookh, Othman H. Zinkaah January 2019 (has links)
This research aims to investigate the behaviour of glass fibre reinforced polymer bars (GFRP) reinforced continuous concrete deep beams. For this purpose, experimental, analytical and numerical studies were conducted. Nine continuous concrete deep beams reinforced with GFRP bars and one specimen reinforced with steel bars were experimentally tested to failure. The investigated parameters included shear span-to-overall depth ratio (𝑎/ℎ), size effect and web reinforcement ratio. Two 𝑎/ℎ ratios of 1.0 and 1.7 and three section heights of 300 mm, 600 mm and 800 mm as well as two web reinforcement ratios of 0% and 0.4% were used. The longitudinal reinforcement, compressive strength and beam width were kept constant at 1.2%, ≈55 MPa and 175 mm, respectively. The web reinforcement ratio achieved the minimum requirements of the CSA S806-12. The experimental results highlighted that the web reinforcement ratio improved the load capacities by about 10% and 18% for specimens having 𝑎/ℎ ratios of 1.0 and 1.7, respectively. For specimens with web reinforcement, the increase of 𝑎/ℎ ratio from 1.0 to 1.7 led to reductions in the load carrying capacity by about 33% and 29% for beams with overall depths of 300 mm and 600 mm, respectively. Additionally, a considerable reduction occurred in the shear strength due to the increase of the section depth from 300 mm to 600 mm. The experimental results confirmed the impacts of web reinforcement and size effect that were not considered by the strut-and-tie method (STM) of the only code provision, the Canadian S806-12, that addressed such elements. In this study, the STM was illustrated and simplified to be adopted for GFRP RC continuous deep beams, and then, the experimental results obtained from this study were employed to assess the performance of the effectiveness factors suggested by the STMs of the American (ACI 318-2014), European (EC2-04) and Canadian (S806-12) codes as well as those factors recommended by the previous studies to predict the load capacities. It was found that these methods were unable to reflect the influences of member size and/or web reinforcement reasonably, the impact of which has been confirmed by the current experimental investigation. Therefore, a new effectiveness factor was recommended to be used with the STM. Additionally, an upper bound analysis was developed to predict the load capacities of the tested specimens considering a reduced bond strength of GFRP bars after assessing the old version recommended for steel RC continuous deep beams. A good agreement between the predicted results and the measured ones was obtained with the mean and coefficient of variation values for experimental/calculated results of 1.02 and 5.9%, respectively, for the STM and 1.03 and 8.6%, respectively, for the upper-bound analysis. A 2D finite element analysis using ABAQUS/Explicit approach was carried out to introduce a model able to estimate the response of GFRP RC continuous deep beams. Based on the experimental results extracted from the pullout tests, the interface between the longitudinal reinforcement and concrete surface was modelled using a cohesive element (COH2D4) tool available in ABAQUS. Furthermore, a perfect bond between the longitudinal reinforcement and surrounding concrete was also modelled to evaluate the validity of this assumption introduced by many previous FE studies. To achieve a reasonable agreement with the test results, a sensitivity analysis was implemented to select the proper mesh size and concrete model variables. The suitability and capability of the developed FE model were demonstrated by comparing its predictions with the test results of beams tested experimentally. Model validation showed a reasonable agreement with the experiments in terms of the failure mode, total failure load and the load-deflection responses. The perfect bond model has overestimated the predicted results in terms of stiffness behaviour and failure load, while the cohesive element model was more suitable to reflect the behaviour of those specimens. The validated FE model was then employed to implement a parametric study for the key parameters that govern the behaviour of beams tested and to achieve an in depth understanding of such elements. The parametric study showed that the higher the 𝑎/ℎ ratio the more pronounced the effect of web and the longitudinal reinforcements and the lower the effect of concrete compressive strength; and vice versa when 𝑎/ℎ ratio reduces.
337

Efeito da rigidez de pilar parede no comportamento sísmico de edifício de concreto armado

Thölken, Denise 13 December 2013 (has links)
Este trabalho tem como objeto o estudo do efeito da rigidez de pilar parede no comportamento estrutural de edifícios de concreto armado submetidos a sismos. Foram consideradas as premissas da norma brasileira ABNT NBR15421:2006, que apresenta os critérios para projeto de estruturas resistentes a sismo. A análise linear com emprego dos métodos da norma - método das forças horizontais equivalentes, método espectral e histórico de aceleração no tempo - foi aplicada em edifícios com dois tipos de sistemas estruturais, sendo eles pórtico de concreto e sistema dual pórtico de concreto e pilar parede. Os resultados foram analisados nos pórticos de extremidade das estruturas nos sentidos longitudinal (x) e transversal (y), comparando-se os deslocamentos de cada pavimento e esforços cortantes, momento fletor e normal nas bases dos pilares. A comparação foi realizada entre os três métodos aplicados e os sistemas estruturais analisados. / The aim of this work is to study the stiffness effect of wall columns on structural behavior of reinforced concrete buildings subjected to seismic action. The premises of the Brazilian standard ABNT NBR14521:2006 were considered, which presents criteria for earthquake resistant design of structures. The linear analysis employed the methods of the Brazilian standard - equivalent static load method, response spectrum analysis and time history method - were applied to buildings with two types of structural systems, namely concrete frame and dual system concrete frame and wall columns. The results were analyzed in edge frames structures in the longitudinal and transverse directions, comparing the displacement of each floor and shear, bending moment and axial forces on the bases of the columns. A comparison was made between the three methods applied and the structural systems analyzed.
338

Análise experimental e computacional de vigas biapoiadas de concreto armado reforçadas com CRFC / Experimental and Computacional analysis of reinforced concrete beams strengthened with CFRP

Pivatto, Amanda Brandenburg 12 July 2017 (has links)
CAPES / A falta de manutenção, a mudança de carregamentos, as deficiências de projeto, de execução e até mesmo dos materiais constituintes de uma peça estrutural podem levar à necessidade de aplicação de um reforço estrutural. Dentre estes métodos se destaca o reforço estrutural com Compósitos Reforçados com Fibra de Carbono (CRFC). Este trabalho tem como objetivo analisar o comportamento estrutural por meio de métodos experimentais e modelagem numérica de vigas biapoiadas de concreto armado reforçadas à flexão com CRFC, além de analisar a influência da adição de incrementos de ancoragem no comportamento da peça. O modelo computacional foi desenvolvido no software comercial ANSYS, por meio da utilização do Método dos Elementos Finitos. Foi avaliado o ganho de resistência com a implantação de uma e duas camadas de CRFC em comparação à viga sem reforço. A interface concreto – reforço foi considerada na simulação computacional, uma vez que os esforços atuantes nesta região geralmente são a causa da ruptura neste tipo de peça. Para isso, foi utilizado o Modelo da Zona de Coesão como método de representação da interface. Em relação ao programa experimental, além da variação do número de camadas de reforço, também foi avaliada a influência da adição de incrementos de ancoragem lateral no comportamento das vigas estudadas. Como resultados, foi alcançada uma boa acurácia entre os modelos computacionais e a análise experimental em relação ao valor da carga última de cada situação analisada, bem como em relação ao valor de deslocamento encontrado para as vigas reforçadas. Entretanto, percebeu-se que os valores das deformações obtidos no modelo computacional foram superiores à média dos valores encontrados na análise experimental. Além disso, observou-se também que as vigas tiveram sua rigidez aumentada com o acréscimo de camadas de reforço. Ademais, foi verificado que a adição de incrementos de ancoragem levou a um acréscimo na resistência das peças, mais efetivo que o aumento do número de camadas, para o caso deste trabalho. / The lack of maintenance, the change in loadings, project and execution failures, and even failures of constituent materials of a structural part lead to the necessity of applying a structural reinforcement. Among these methods highlights the structural reinforcement with Carbon Fiber Reinforced Polymer (CFRP). This research has the objective to examine whether there is a good relationship between laboratory tests and a simulation model of reinforced concrete beams strengthened in bending with CFRP, in addition to analyze the influence of anchorage increments application in the structural behavior. The computacional model was developed in the comercial software ANSYS, by the utilization of the Finite Element Modeling for the structural analysis. The resistance gain with the implementation of one and two layers of CFRP was evaluated compared with the reference beam. The concrete – reinforce interface was considered in the computacional simulation, since the active efforts in this area are the reason of this type of structure failure. Thus, the Cohesive Zone Model was used for the interface representation. In relation to the experimental tests, beyond the number of layers variation, it was also evaluated the influence of anchorage increments application in the structural behavior. As results, it was obtained a good accuracy of the computacional models and the experimental tests in relation to the rupture load, in addition to the displacements values for the reinforced beams. However, the strain values achieved by the computacional model were higher than the experimental analysis rate values. Besides, it was also noticed that the beams had an increase of the stiffness with the addition of the reinforced layers. Furthermore, it was verified that the anchorage increments application caused an increase of the resistance, even more efficient than the addition of layers, for this case of study.
339

Análise experimental e computacional de vigas biapoiadas de concreto armado reforçadas com CRFC / Experimental and Computacional analysis of reinforced concrete beams strengthened with CFRP

Pivatto, Amanda Brandenburg 12 July 2017 (has links)
CAPES / A falta de manutenção, a mudança de carregamentos, as deficiências de projeto, de execução e até mesmo dos materiais constituintes de uma peça estrutural podem levar à necessidade de aplicação de um reforço estrutural. Dentre estes métodos se destaca o reforço estrutural com Compósitos Reforçados com Fibra de Carbono (CRFC). Este trabalho tem como objetivo analisar o comportamento estrutural por meio de métodos experimentais e modelagem numérica de vigas biapoiadas de concreto armado reforçadas à flexão com CRFC, além de analisar a influência da adição de incrementos de ancoragem no comportamento da peça. O modelo computacional foi desenvolvido no software comercial ANSYS, por meio da utilização do Método dos Elementos Finitos. Foi avaliado o ganho de resistência com a implantação de uma e duas camadas de CRFC em comparação à viga sem reforço. A interface concreto – reforço foi considerada na simulação computacional, uma vez que os esforços atuantes nesta região geralmente são a causa da ruptura neste tipo de peça. Para isso, foi utilizado o Modelo da Zona de Coesão como método de representação da interface. Em relação ao programa experimental, além da variação do número de camadas de reforço, também foi avaliada a influência da adição de incrementos de ancoragem lateral no comportamento das vigas estudadas. Como resultados, foi alcançada uma boa acurácia entre os modelos computacionais e a análise experimental em relação ao valor da carga última de cada situação analisada, bem como em relação ao valor de deslocamento encontrado para as vigas reforçadas. Entretanto, percebeu-se que os valores das deformações obtidos no modelo computacional foram superiores à média dos valores encontrados na análise experimental. Além disso, observou-se também que as vigas tiveram sua rigidez aumentada com o acréscimo de camadas de reforço. Ademais, foi verificado que a adição de incrementos de ancoragem levou a um acréscimo na resistência das peças, mais efetivo que o aumento do número de camadas, para o caso deste trabalho. / The lack of maintenance, the change in loadings, project and execution failures, and even failures of constituent materials of a structural part lead to the necessity of applying a structural reinforcement. Among these methods highlights the structural reinforcement with Carbon Fiber Reinforced Polymer (CFRP). This research has the objective to examine whether there is a good relationship between laboratory tests and a simulation model of reinforced concrete beams strengthened in bending with CFRP, in addition to analyze the influence of anchorage increments application in the structural behavior. The computacional model was developed in the comercial software ANSYS, by the utilization of the Finite Element Modeling for the structural analysis. The resistance gain with the implementation of one and two layers of CFRP was evaluated compared with the reference beam. The concrete – reinforce interface was considered in the computacional simulation, since the active efforts in this area are the reason of this type of structure failure. Thus, the Cohesive Zone Model was used for the interface representation. In relation to the experimental tests, beyond the number of layers variation, it was also evaluated the influence of anchorage increments application in the structural behavior. As results, it was obtained a good accuracy of the computacional models and the experimental tests in relation to the rupture load, in addition to the displacements values for the reinforced beams. However, the strain values achieved by the computacional model were higher than the experimental analysis rate values. Besides, it was also noticed that the beams had an increase of the stiffness with the addition of the reinforced layers. Furthermore, it was verified that the anchorage increments application caused an increase of the resistance, even more efficient than the addition of layers, for this case of study.
340

The Repair of Laterally Damaged Concrete Bridge Girders Using Carbon Fiber Reinforcing Polymers (CFRP)

Graeff, Matthew Kent 01 January 2012 (has links)
In recent years the use of carbon fiber reinforcing polymers (CFRP) to repair damaged structural components has become more accepted and practiced. However, the current reference for designing FRP systems to repair and strengthen reinforced concrete (RC) and prestressed concrete (PSC) girders has limitations. Similarly, very few resources address solutions for the debonding problem associated with CFRP laminates or the use of CFRP laminates to repair structural members with pre-existing damage. The included experimental program consists of testing both RC and PSC girders with simulated lateral damage and CFRP repairs. A total of 34 RC beams were statically tested under a 4-point loading until failure and had cross-section dimensions of 5” x 10” (14cm x 25.4cm), were 8’ long (2.44m), and were reinforced with either #3 or #4 mild steel rebar. 13 PSC girders having cross-section dimensions representing a half-scaled AASHTO type II shape, were 20’ long (6.1m), and were prestressed with five 7/16” (11.1mm) diameter low-lax 7-wire strands. Ten of the PSC girders were statically loaded until failure under a 4-point testing setup, but 3 PSC girders were dynamically tested under fatigue loading using a 3-point arrangement. Different configurations of CFRP laminates, number and spacing of CFRP transverse U-wraps, and amount of longitudinal CFRP layers are studied. The results present the flexural behavior of all specimen including load-deflection characteristics, strain characteristics, and modes of failure. Ultimately, results are used to recommend important considerations, needed criteria, and proper design procedures for a safe and optimized CFRP repair configuration.

Page generated in 0.0406 seconds