• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 8
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Berechnung singulärer Punkte nichtlinearer Gleichungssysteme

Schnabel, Uwe 20 November 2000 (has links) (PDF)
Diese Arbeit beschäftigt sich mit der Berechnung singulärer Punkte nichtlinearer Gleichungssysteme F(x)=0. Dazu werden minimal erweiterte Systeme der Form F(x)+D*s=0, f(x)=0 betrachtet. Die allgemeine Vorgehensweise zur Berechnung singulärer Punkte mit solchen erweiterten Systemen wird geschlossen dargestellt. Dazu werden zuerst die (teilweise verallgemeinerten Ljapunov-Schmidt-)reduzierten Funktionen von Golubitsky und Schaeffer, Beyn, Jepson und Spence, Griewank und Reddien, Kunkel bzw. Govaerts verallgemeinert und zusammengefasst. Es wird die verallgemeinerte Kontaktäquivalenz all dieser verallgemeinerten reduzierten Funktionen und die Gleichheit der benötigten Regularitätsannahmen bewiesen. Für eine weitere, neu eingeführte reduzierte Funktion wird die in dieser Arbeit definierte Ableitungsäquivalenz zu den anderen reduzierten Funktionen gezeigt. Mit dieser neuen reduzierten Funktion wird eine Reihe singulärer Punkte klassifiziert. Aus dieser Klassifikation ergeben sich Funktionen f aus Ableitungen der neuen reduzierten Funktion. Mit den so eingeführten Funktionen f kann das zweistufiges Newtonverfahren nach Pönisch und Schwetlick effektiv angewendet werden. Alle benötigten Ableitungen werden mittels Automatischer Differentiation bestimmt. Die numerischen Ergebnisse für eine Reihe von Beispielen zeigen die Effizienz dieses Verfahrens. Beim Newtonverfahren werden lineare Gleichungssysteme mit geränderten Matrizen B gelöst. Es wird gezeigt, für welche Ränderungen die Konditionszahl von B minimal ist. Dies ist z.B. für gewisse Vielfache der Singulärvektoren zu den kleinsten Singulärwerten der Fall. Zur Bestimmung dieser Ränderungen wird die inverse Teilraumiteration für Singulärwerte in verschiedenen Algorithmen angewendet. Die Konvergenzeigenschaften werden untersucht. Für einen Algorithmus wird bewiesen, dass die Konditionszahlen der iterierten geränderten Matrizen monoton fallen. Die numerischen Experimente bestätigen diese Eigenschaften.
22

Numerical experiments with stable versions of the Generalized Finite Element Method / Experimentos numéricos com versões estáveis do Método dos Elementos Finitos Generalizados

Fernando Massami Sato 21 August 2017 (has links)
The Generalized Finite Element Method (GFEM) is essentially a partition of unity based method (PUM) that explores the Partition of Unity (PoU) concept to match a set of functions chosen to efficiently approximate the solution locally. Despite its well-known advantages, the method may present some drawbacks. For instance, increasing the approximation space through enrichment functions may introduce linear dependences in the solving system of equations, as well as the appearance of blending elements. To address the drawbacks pointed out above, some improved versions of the GFEM were developed. The Stable GFEM (SGFEM) is a first version hereby considered in which the GFEM enrichment functions are modified. The Higher Order SGFEM proposes an additional modification for generating the shape functions attached to the enriched patch. This research aims to present and numerically test these new versions recently proposed for the GFEM. In addition to highlighting its main features, some aspects about the numerical integration when using the higher order SGFEM, in particular are also addressed. Hence, a splitting rule of the quadrilateral element area, guided by the PoU definition itself is described in detail. The examples chosen for the numerical experiments consist of 2-D panels that present favorable geometries to explore the advantages of each method. Essentially, singular functions with good properties to approximate the solution near corner points and polynomial functions for approximating smooth solutions are examined. Moreover, a comparison among the conventional FEM and the methods herein described is made taking into consideration the scaled condition number and rates of convergence of the relative errors on displacements. Finally, the numerical experiments show that the Higher Order SGFEM is the more robust and reliable among the versions of the GFEM tested. / O Método dos Elementos Finitos Generalizados (MEFG) é essencialmente baseado no método da partição da unidade, que explora o conceito de partição da unidade para compatibilizar um conjunto de funções escolhidas para localmente aproximar de forma eficiente a solução. Apesar de suas vantagens bem conhecidas, o método pode apresentar algumas desvantagens. Por exemplo, o aumento do espaço de aproximação por meio das funções de enriquecimento pode introduzir dependências lineares no sistema de equações resolvente, assim como o aparecimento de elementos de mistura. Para contornar as desvantagens apontadas acima, algumas versões aprimoradas do MEFG foram desenvolvidas. O MEFG Estável é uma primeira versão aqui considerada na qual as funções de enriquecimento do MEFG são modificadas. O MEFG Estável de ordem superior propõe uma modificação adicional para a geração das funções de forma atreladas ao espaço enriquecido. Esta pesquisa visa apresentar e testar numericamente essas novas versões do MEFG recentemente propostas. Além de destacar suas principais características, alguns aspectos sobre a integração numérica quando usado o MEFG Estável de ordem superior, em particular, são também abordados. Por exemplo, detalha-se uma regra de divisão da área do elemento quadrilateral, guiada pela própria definição de sua partição da unidade. Os exemplos escolhidos para os experimentos numéricos consistem em chapas com geometrias favoráveis para explorar as vantagens de cada método. Essencialmente, examinam-se funções singulares com boas propriedades de aproximar a solução nas vizinhanças de vértices de cantos, bem como funções polinomiais para aproximar soluções suaves. Ademais, uma comparação entre o MEF convencional e os métodos aqui descritos é feita levando-se em consideração o número de condição do sistema escalonado e as razões de convergência do erro relativo em deslocamento. Finalmente, os experimentos numéricos mostram que o MEFG Estável de ordem superior é a mais robusta e confiável entre as versões do MEFG testadas.
23

Berechnung singulärer Punkte nichtlinearer Gleichungssysteme

Schnabel, Uwe 27 October 2000 (has links)
Diese Arbeit beschäftigt sich mit der Berechnung singulärer Punkte nichtlinearer Gleichungssysteme F(x)=0. Dazu werden minimal erweiterte Systeme der Form F(x)+D*s=0, f(x)=0 betrachtet. Die allgemeine Vorgehensweise zur Berechnung singulärer Punkte mit solchen erweiterten Systemen wird geschlossen dargestellt. Dazu werden zuerst die (teilweise verallgemeinerten Ljapunov-Schmidt-)reduzierten Funktionen von Golubitsky und Schaeffer, Beyn, Jepson und Spence, Griewank und Reddien, Kunkel bzw. Govaerts verallgemeinert und zusammengefasst. Es wird die verallgemeinerte Kontaktäquivalenz all dieser verallgemeinerten reduzierten Funktionen und die Gleichheit der benötigten Regularitätsannahmen bewiesen. Für eine weitere, neu eingeführte reduzierte Funktion wird die in dieser Arbeit definierte Ableitungsäquivalenz zu den anderen reduzierten Funktionen gezeigt. Mit dieser neuen reduzierten Funktion wird eine Reihe singulärer Punkte klassifiziert. Aus dieser Klassifikation ergeben sich Funktionen f aus Ableitungen der neuen reduzierten Funktion. Mit den so eingeführten Funktionen f kann das zweistufiges Newtonverfahren nach Pönisch und Schwetlick effektiv angewendet werden. Alle benötigten Ableitungen werden mittels Automatischer Differentiation bestimmt. Die numerischen Ergebnisse für eine Reihe von Beispielen zeigen die Effizienz dieses Verfahrens. Beim Newtonverfahren werden lineare Gleichungssysteme mit geränderten Matrizen B gelöst. Es wird gezeigt, für welche Ränderungen die Konditionszahl von B minimal ist. Dies ist z.B. für gewisse Vielfache der Singulärvektoren zu den kleinsten Singulärwerten der Fall. Zur Bestimmung dieser Ränderungen wird die inverse Teilraumiteration für Singulärwerte in verschiedenen Algorithmen angewendet. Die Konvergenzeigenschaften werden untersucht. Für einen Algorithmus wird bewiesen, dass die Konditionszahlen der iterierten geränderten Matrizen monoton fallen. Die numerischen Experimente bestätigen diese Eigenschaften.

Page generated in 0.1055 seconds