• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 14
  • 14
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Exploring the motivational antecedents of Nepalese learners of L2 English

Schmidtke-Bode, Karsten, Kachel, Gregor 19 June 2024 (has links)
This paper is the first to examine the motivational disposition of Nepalese learners of L2 English. Based on an adapted version of the questionnaire in (Kormos, Judit & Kata Csizér. 2008. Age-related differences in motivation of learning English as a foreign language: Attitudes, selves, and motivated behavior. Language Learning 58. 327–355. Doi:10.1111/j.1467-9922.2008.00443.x.), we test the robustness and culture-specific applicability of well-known motivational antecedents to this learner population, and we investigate how the effects of these antecedents are mediated by the learners’ gender, age and regional aspects of the educational setting. In doing so, we offer novel ways of analyzing the data: Firstly, we employ random forests and conditional inference trees for assessing the relative importance of motivational antecedents. Secondly, we complement the traditional ‘scale-based approach’, which focuses on holistic constructs like the ‘Ideal L2 Self’, with an ‘item- based approach’ that highlights more specific components of such scales. The results are interpreted with reference to the L2 Motivational Self System (Dörnyei, Zoltán. 2005. The psychology of the language learner: Individual differences in second language acquisition. Mahwah, NJ: Lawrence Erlbaum) and to previous studies on other Asian populations of L2 learners.
12

Risk Factors for Suicidal Behaviour Among Canadian Civilians and Military Personnel: A Recursive Partitioning Approach

Rusu, Corneliu 05 April 2018 (has links)
Background: Suicidal behaviour is a major public health problem that has not abated over the past decade. Adopting machine learning algorithms that allow for combining risk factors that may increase the predictive accuracy of models of suicide behaviour is one promising avenue toward effective prevention and treatment. Methods: We used Canadian Community Health Survey – Mental Health and Canadian Forces Mental Health Survey to build conditional inference random forests models of suicidal behaviour in Canadian general population and Canadian Armed Forces. We generated risk algorithms for suicidal behaviour in each sample. We performed within- and between-sample validation and reported the corresponding performance metrics. Results: Only a handful of variables were important in predicting suicidal behaviour in Canadian general population and Canadian Armed Forces. Each model’s performance on within-sample validation was satisfactory, with moderate to high sensitivity and high specificity, while the performance on between-sample validation was conditional on the size and heterogeneity of the training sample. Conclusion: Using conditional inference random forest methodology on large nationally representative mental health surveys has the potential of generating models of suicidal behaviour that not only reflect its complex nature, but indicate that the true positive cases are likely to be captured by this approach.
13

Applying Machine Learning to Explore Nutrients Predictive of Cardiovascular Disease Using Canadian Linked Population-Based Data / Machine Learning to Predict Cardiovascular Disease with Nutrition

Morgenstern, Jason D. January 2020 (has links)
McMaster University MASTER OF PUBLIC HEALTH (2020) Hamilton, Ontario (Health Research Methods, Evidence, and Impact) TITLE: Applying Machine Learning to Determine Nutrients Predictive of Cardiovascular Disease Using Canadian Linked Population-Based Data AUTHOR: Jason D. Morgenstern, B.Sc. (University of Guelph), M.D. (Western University) SUPERVISOR: Professor L.N. Anderson, NUMBER OF PAGES: xv, 121 / The use of big data and machine learning may help to address some challenges in nutritional epidemiology. The first objective of this thesis was to explore the use of machine learning prediction models in a hypothesis-generating approach to evaluate how detailed dietary features contribute to CVD risk prediction. The second objective was to assess the predictive performance of the models. A population-based retrospective cohort study was conducted using linked Canadian data from 2004 – 2018. Study participants were adults age 20 and older (n=12 130 ) who completed the 2004 Canadian Community Health Survey, Cycle 2.2, Nutrition (CCHS 2.2). Statistics Canada has linked the CCHS 2.2 data to the Discharge Abstracts Database and the Canadian Vital Statistics Death database, which were used to determine cardiovascular outcomes (stroke or ischemic heart disease events or deaths). Conditional inference forests were used to develop models. Then, permutation feature importance (PFI) and accumulated local effects (ALEs) were calculated to explore contributions of nutrients to predicted disease. Supplement-use (median PFI (M)=4.09 x 10-4, IQR=8.25 x 10-7 – 1.11 x 10-3) and caffeine (M=2.79 x 10-4, IQR= -9.11 x 10-5 – 5.86 x 10-4) had the highest median PFIs for nutrition-related features. Supplement-use was associated with decreased predicted risk of CVD (accumulated local effects range (ALER)= -3.02 x 10-4 – 2.76 x 10-4) and caffeine was associated with increased predicted risk (ALER= -9.96 x 10-4 – 0.035). The best-performing model had a logarithmic loss of 0.248. Overall, many non-linear relationships were observed, including threshold, j-shaped, and u-shaped. The results of this exploratory study suggest that applying machine learning to the nutritional epidemiology of CVD, particularly using big datasets, may help elucidate risks and improve predictive models. Given the limited application thus far, work such as this could lead to improvements in public health recommendations and policy related to dietary behaviours. / Thesis / Master of Public Health (MPH) / This work explores the potential for machine learning to improve the study of diet and disease. In chapter 2, opportunities are identified for big data to make diet easier to measure. Also, we highlight how machine learning could find new, complex relationships between diet and disease. In chapter 3, we apply a machine learning algorithm, called conditional inference forests, to a unique Canadian dataset to predict whether people developed strokes or heart attacks. This dataset included responses to a health survey conducted in 2004, where participants’ responses have been linked to administrative databases that record when people go to hospital or die up until 2017. Using these techniques, we identified aspects of nutrition that predicted disease, including caffeine, alcohol, and supplement-use. This work suggests that machine learning may be helpful in our attempts to understand the relationships between diet and health.
14

Some Contributions to Inferential Issues of Censored Exponential Failure Data

Han, Donghoon 06 1900 (has links)
In this thesis, we investigate several inferential issues regarding the lifetime data from exponential distribution under different censoring schemes. For reasons of time constraint and cost reduction, censored sampling is commonly employed in practice, especially in reliability engineering. Among various censoring schemes, progressive Type-I censoring provides not only the practical advantage of known termination time but also greater flexibility to the experimenter in the design stage by allowing for the removal of test units at non-terminal time points. Hence, we first consider the inference for a progressively Type-I censored life-testing experiment with k uniformly spaced intervals. For small to moderate sample sizes, a practical modification is proposed to the censoring scheme in order to guarantee a feasible life-test under progressive Type-I censoring. Under this setup, we obtain the maximum likelihood estimator (MLE) of the unknown mean parameter and derive the exact sampling distribution of the MLE through the use of conditional moment generating function under the condition that the existence of the MLE is ensured. Using the exact distribution of the MLE as well as its asymptotic distribution and the parametric bootstrap method, we discuss the construction of confidence intervals for the mean parameter and their performance is then assessed through Monte Carlo simulations. Next, we consider a special class of accelerated life tests, known as step-stress tests in reliability testing. In a step-stress test, the stress levels increase discretely at pre-fixed time points and this allows the experimenter to obtain information on the parameters of the lifetime distributions more quickly than under normal operating conditions. Here, we consider a k-step-stress accelerated life testing experiment with an equal step duration τ. In particular, the case of progressively Type-I censored data with a single stress variable is investigated. For small to moderate sample sizes, we introduce another practical modification to the model for a feasible k-step-stress test under progressive censoring, and the optimal τ is searched using the modified model. Next, we seek the optimal τ under the condition that the step-stress test proceeds to the k-th stress level, and the efficiency of this conditional inference is compared to the preceding models. In all cases, censoring is allowed at each change stress point iτ, i = 1, 2, ... , k, and the problem of selecting the optimal Tis discussed using C-optimality, D-optimality, and A-optimality criteria. Moreover, when a test unit fails, there are often more than one fatal cause for the failure, such as mechanical or electrical. Thus, we also consider the simple stepstress models under Type-I and Type-II censoring situations when the lifetime distributions corresponding to the different risk factors are independently exponentially distributed. Under this setup, we derive the MLEs of the unknown mean parameters of the different causes under the assumption of a cumulative exposure model. The exact distributions of the MLEs of the parameters are then derived through the use of conditional moment generating functions. Using these exact distributions as well as the asymptotic distributions and the parametric bootstrap method, we discuss the construction of confidence intervals for the parameters and then assess their performance through Monte Carlo simulations. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.1023 seconds