• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 406
  • 124
  • 56
  • 39
  • 9
  • 8
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 810
  • 333
  • 142
  • 139
  • 80
  • 77
  • 69
  • 67
  • 65
  • 62
  • 60
  • 51
  • 50
  • 49
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

The effect of conducting gesture on expressive-interpretive performance of college music majors

Gallops, Ronald Wayne 01 June 2005 (has links)
The purpose of this study was to examine the effect of non-verbal conducting gesture on musicians stylistic response and whether conducting gestures alone elicit consistent musical responses from musicians. Through an analysis that utilized a Gestural Response Instrument (GRI) it was determined that, even if the use of verbal and facialcues were eliminated, some experienced conductors successfully utilized non-verbal conducting gestures to communicate specific musical interpretations. It appeared that musicians responded in specific ways to the musical interpretation of conductors who had command of a variety of conducting gestures. The results illustrated the existence of a perceptual contract that facilitates the non-verbal communication expressed through gestural conducting. As demonstrated through this study, some experienced conductor slacked the gestural technique and vocabulary necessary to convey prescribed musical decisions while others were proficient in this area.
232

Synthesis and electrochemical characterisation of processable polypyrrole boronic acid derivatives for carbohydrate binding

Bunnfors, Kalle January 2015 (has links)
Conducting polymers have been widely explored for many different purposes including sensing. In thisthesis the conducive properties of pyrrole and the carbohydrate binding properties of boronic acid iscombined to make a reagent-free detector for carbohydrates. The polymer is manufactured in form ofparticles in the μm scale to create a porous film which has a high surface to volume ratio.The material was characterised and the binding properties were evaluated for galactose and glucose.Proof of binding was found via both electrochemical methods and QCM-D. A correlation between R2 value and concentration of substrate was found which enables measurement of concentration of carbohydratesin unknown samples.
233

Philosophies, goals and challenges of selecting repertoire for the collegiate and professional orchestra

Smith, Brad 28 August 2008 (has links)
Not available / text
234

Conducting polymer based nanocomposites for removal of fluoride and chromium (VI) from water

Bhaumik, Madhumita. January 2012 (has links)
D.Tech. Chemical Engineering / This research emphasizes the potential application of conducting polymer based nanocomposites for the remediation of contaminants from water. This study facilitates the preparation of conducting polymer based nanomaterials for the efficient removal of fluoride and toxic chromium(VI) from water. This work also identifies the importance of understanding the physico-chemical properties of the synthesized nanomaterials which greatly influence the materials performance in removing contaminants from water.
235

Mechanistic Studies of SecY-Mediated Protein Translocation in Intact Escherichia coli Cells

Park, Eunyong January 2012 (has links)
During the synthesis of secretory and membrane proteins, polypeptides move through a universally conserved protein-conducting channel, formed by the Sec61/SecY complex that is located in the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. The channel operates in two different modes depending on its binding partners. In co-translational translocation, a pathway found in all organisms, the channel associates with a translating ribosome. In post-translational translocation, the channel cooperates with either the Sec62–Sec63 complex in eukaryotes or the SecA ATPase in bacteria. Despite tremendous progress in our understanding of protein translocation over the past decades, many questions about its mechanism remain to be answered. These include (1) how the channel maintains the membrane barrier for small molecules while transporting large proteins, (2) what is the functional implication of channel oligomerization, and (3) how the channel interacts with binding partners and polypeptide substrates during translocation. To address these questions, we developed a novel in vivo method to generate both co- and post-translation translocation intermediates in intact Escherichia coli cells, such that polypeptide chains are only partially translocated through the channel. Using this method, we first demonstrated that a translocating polypeptide itself blocks small molecules from passing through an open SecY channel. A hydrophobic pore ring surrounding the polypeptide chain is vital for maintaining the membrane barrier during translocation. Next, we examined the importance of SecY oligomerization in protein translocation. Crosslinking experiments showed that SecY molecules interact with each other in native membranes, but that this self-association is greatly decreased upon insertion of polypeptide substrates. We also showed that SecY mutants that cannot form oligomers are still functional in vivo. Collectively, our data indicate that a single copy of SecY is sufficient for protein translocation. Finally, we isolated an intact co-translational translocation intermediate from E. coli cells and analyzed its structure by cryo-electron microscopy. An initial map shows a translating ribosome containing all three tRNAs is bound to one copy of the SecY channel. Analysis of a large dataset is ongoing in order to understand the structural basis of how the channel interacts with the ribosome and translocating nascent chain.
236

Synthesis of dibenzo[a,e]cyclooctatetraene based conducting polymer : a potential molecular polymer actuator

Chou, Andrea Chengyi 14 February 2011 (has links)
A new polymer with dibenzo[a,e]cyclooctatetraene as the actuation center and one of the thiophene derivatives, 3,4-ethylenedioxythiophene, as polymer chain is successfully synthesized. Nuclear magnetic resonance spectrum is obtained for each synthetic step. Several electrochemistry tests are done to examine the oxidation and reduction properties of the monomer and polymer. Cyclic voltammetry is used for the polymerization. Polymer is first grown on a metallic working electrode and further coated on an ITO plate. UV-Vis experiment is also done. A [pi] [arrow] [pi]* transition is observed as the primary polymer electronic absorption peak. Thickness of the polymer film is also recorded. / text
237

Synthesis and characterization of electronic materials for photovoltaic applications

Mejia, Michelle Leann 15 June 2011 (has links)
Electronic materials are of great interest for use in photovoltaics, sensors, light-emitting diodes, and molecular electronics. Hybrid Inorganic/Organic materials have been studied for device application due to their unique electronic properties. These properties result from the formation of bulk heterojunctions between inorganic (n-type) and organic (p-type) materials. However, due to incomplete pathways for charge transport and poor interfaces between materials, charge trapping and exciton recombination is often high. In an effort to alleviate these problems, we have developed an approach to fabricate bulk heterojunction materials via a seeded growth process. Electropolymerizable Schiff base complexes have been designed, synthesized, and utilized as precursors for conducting metallopolymers. The embedded metal centers are used as seed points for direct growth of size-controllable semiconductor nanoparticles within the polymer film leading to direct electronic communication between the two materials. The synthesis of CdS, CdSe, Ga₂S₃, CuInS₂, CuInSe₂, CuGaS₂, CuGaSe₂, CuGa[subscript x]In[subscript x]-₁S₂, and CuGa[subscript x]In[subscript x]-₁Se₂ has been seen through TEM and EDX. Devices have been fabricated and current studies have focused on the photovoltaic characterization of these materials which have a PCE of 0.11%. As a second but closely related area, polymers have also been studied as organic semiconductors for device applications. However they are hard to process from solution and their polymeric structure can vary. Both of these problems can be solved by using well-defined solution processable oligomers. Thiophene oligomers have been synthesized and characterized through Single Crystal X-Ray Crystallography, Four Point Probe Conductivity, and Powder Diffraction. These oligomers have a well-defined structure and are solution processable from a variety of solvents which can then be used as models to predict and study the properties of polythiophene. / text
238

Philosophies, goals and challenges of selecting repertoire for the collegiate and professional orchestra

Smith, Brad, 1973- 08 August 2011 (has links)
Not available / text
239

Molecular investigation of polypyrrole and surface recognition by affinity peptides

Fonner, John Michael 23 January 2012 (has links)
Successful tissue engineering strategies in the nervous system must be carefully crafted to interact favorably with the complex biochemical signals of the native environment. To date, all chronic implants incorporating electrical conductivity degrade in performance over time as the foreign body reaction and subsequent fibrous encapsulation isolate them from the host tissue. Our goal is to develop a peptide-based interfacial biomaterial that will non-covalently coat the surface of the conducting polymer polypyrrole, allowing the implant to interact with the nervous system through both electrical and chemical cues. Starting with a candidate peptide sequence discovered through phage display, we used computational simulations of the peptide on polypyrrole to describe the bound peptide structure, explore the mechanism of binding, and suggest new, better binding peptide sequences. After experimentally characterizing the polymer, we created a molecular mechanics model of polypyrrole using quantum mechanics calculations and compared its in silico properties to experimental observables such as density and chain packing. Using replica exchange molecular dynamics, we then modeled the behavior of affinity binding peptides on the surface of polypyrrole in explicit water and saline environments. Relative measurements of the contributions of each amino acid were made using distance measurements and computational alanine scanning. / text
240

Achieving Balance in Music for Chorus and Band: Analysis and Performance Issues in Requiem by Frigyes Hidas

Bade, Andy January 2013 (has links)
The purpose of this study is to provide a guide for conductors when evaluating issues of balance in works for chorus and symphonic band, and to assist them in realizing such works in performance. The principal focus of the document will be an analysis of vocal and instrumental textures in Requiem by Frigyes Hidas as they affect balance and textual clarity, using accompaniment types described by Hawley Ades as guides. The analysis shows that the scoring helps mitigate balance problems commonly found in other works scored for similar forces, making a variety of performance options and interpretations available to conductors. Ensemble issues are discussed as they relate to balance, as are practical solutions regarding stage setup.

Page generated in 0.0914 seconds