Spelling suggestions: "subject:"conduction hermique"" "subject:"conduction athermique""
11 |
Contribution à l'étude des transferts thermiques à l'échelle nanométrique : interaction pointe-surfaceChapuis, Pierre-Olivier 17 December 2007 (has links) (PDF)
Cette thèse aborde la problématique des transferts de chaleur dans les micro et nanoystèmes. La première partie concerne la conduction thermique dans l'air. La microscopie à force atomique thermique dite SThM est présentée, et la sonde résistive Wollaston est analysée afin de pouvoir être utilisée à haute température. Les pertes thermiques de la sonde dans l'air environnant sont mesurées en fonction de la pression. L'échange thermique entre la sonde chaude et un échantillon froid est déterminé en fonction de la distance pointe-échantillon. Une modélisation simple de l'expérience, avec des lignes de flux parallèles, tend à démontrer un comportement qui dévie de la diffusion thermique de Fourier. Une étude numérique mettant en jeu une pointe pyramidale nanométrique est ensuite effectuée à l'aide d'une méthode de Monte-Carlo dans le but d'analyser le transport thermique balistique.<br />La seconde partie aborde le rayonnement thermique de champ proche entre les corps métalliques. Il apparaît que le transfert radiatif est différent de celui des matériaux polaires lorsque les distances entre deux corps sont nanométriques. Ceci n'est pas dû à un phénomène modélisable avec l'optique non-locale. Le flux est en fait essentiellement d'origine magnétique et met en jeu des courants de Foucault stochastiques, pris en compte par la contribution dipolaire magnétique dans le cas d'une nanoparticule. Une longueur caractéristique du transfert est l'épaisseur de peau. Elle permet notamment d'expliquer une expérience récente.<br />La possibilité de mesurer le rayonnement de champ proche avec le microscope SThM est également évaluée.
|
12 |
Mesure et modélisation des températures dans les massifs rocheux. Application au projet de tunnel profond Maurienne-Ambin.Goy, Laurent 17 December 1996 (has links) (PDF)
Pour les projets de tunnels profonds; la prévision des températures naturelles au rocher est essentielle pour le choix des méthodes de perforation, de ventilation et de refroidissement. Une méthode numérique de prévision des températures a été développée à cet effet, à partir d'un logiciel 2D d'éléments finis. Les températures sont calculées dans un plan vertical du massif, à partir de l'équation fondamentale de la chaleur en conduction pure. La modélisation nécessite la connaissance de cinq paramètres de base que sont: le profil topographique, les températures de surface, la structure géologique, la conductivité anisotrope des roches et le flux géothermique profond. Une méthode de correction du profil topographique permet de prendre en compte la troisième dimension. Différents tests sont effectués sur un profil de montagne idéalisé, pour évaluer le poids des différents paramètres dans la modélisation. Le modèle est appliqué ensuite au massif comprenant le tunnel Maurienne-Ambin, dans le cadre du projet de ligne à grande vitesse entre Lyon et Turin. Une sonde de mesure des températures a été mise au point et utilisée dans les sondages de reconnaissance pour ce projet de tunnel profond (55km sous un recouvrement maximal de 2500m). Les forages nous permettent de déterminer la structure géologique, les valeurs de conductivité des roches et le flux géothermique de la région en appliquant la "méthode des intervalles". La température maximale calculée le long du tunnel est de 48,5°C. La confrontation entre les mesures de température dans les forages et la modélisation permet de valider les résultats, sauf dans les premières centaines de mètres du massif, où les circulations d'eau, qui ne sont pas prises en compte par notre modèle, modifient la distribution des températures.
|
13 |
Modélisation tridimensionnelle des transferts thermiques et aérauliques dans le bâtiment en environnement orienté objetWurtz, Etienne 20 December 1995 (has links) (PDF)
L'étude consiste à décrire les phénomènes thermiques et aérauliques dans le bâtiment à l'aide d'un outil simplifié : la méthode zonale. Il s'agit d'une méthode tridimensionnelle basée sur le partitionnement en un petit nombre de sous-volumes, intermédiaire entre les modèles à un noeud et les maillages fins. On écrit des bilans de masse et d'énergie dans chaque sous-volume tandis que les échanges dans les interfaces sont déterminés par des lois reliant les débits aux différences de pression. L'aspect modulaire de la méthode facilite son implémentation dans un environnement orienté objet et le logiciel SPARK, adapté à la résolution de gros systèmes d'équations non-linéaires est utilisé à cet effet. Les résultats sont validés par rapport à différentes références expérimentales et numériques. Une étude paramétrique détermine les coefficients empiriques judicieux ainsi que les caractéristiques d'un maillage optimal. Un autre atout d'un environnement objet réside dans les possibilités de couplage. On traitera successivement l'exemple d'un modèle de description du confort, celui des transferts par conduction en tenant compte des effets tridimensionnels ainsi qu'un modèle de transferts de masse. La simulation des effets d'une source de chaleur donne des résultats conformes aux constatations expérimentales dans l'ensemble du volume. Enfin, le cas de la convection mixte est traité en prenant en compte la conservation de l'énergie cinétique dans l'écoulement ; les résultats correspondent à ceux obtenus avec un modèle de champ.
|
14 |
Elaboration et étude des propriétés mécaniques et thermiques de matériaux constitués de nanotubes de carbone verticalement alignés / Elaboration and study of both mechanical and thermal properties of vertically carbon nanotubes reinforced materialsBouillonnec, Jonathan 17 July 2015 (has links)
Les tapis de nanotubes de carbone verticalement alignés sont des candidats potentiels pour des applications telles que les interconnexions ou les matériaux d'interface thermique. Ce travail de recherche porte sur la synthèse de tapis de nanotubes de carbone alignés selon le procédé de dépôt chimique en phase vapeur (CVD) d'aérosols liquides, sur l'élaboration de nanocomposites constitués de différentes nuances de matrices époxy infiltrées au sein de ces tapis, ainsi que sur l'étude des propriétés mécaniques et thermiques longitudinales et transverses des tapis secs eux-mêmes et des nanocomposites 1D formés. Les conditions de synthèse permettent notamment de faire varier les caractéristiques des tapis telles que leur épaisseur, leur masse volumique, le diamètre externe moyen des nanotubes de carbone (NTC), l'espace intertube et la teneur volumique en NTC, alors que leur structure cristalline peut être modifiée par le biais d'un traitement thermique à haute température. L'objectif principal de ce travail consiste à démontrer et quantifier l'effet de certaines caractéristiques des tapis de nanotubes de carbone sur les propriétés mécaniques et thermiques des différents types de tapis et matériaux composites obtenus. Les deux méthodes d'imprégnation mises en oeuvre, voie liquide et infusion, conduisent à des tapis de NTC alignés denses avec un alignement des NTC conservé et une répartition homogène des NTC au sein du système époxy. La fraction volumique en NTC s'avère être le paramètre-clé permettant d'exacerber, dans la direction longitudinale aux NTC, les propriétés mécaniques et thermiques des nanocomposites. Par ailleurs, les tapis de NTC et les nanocomposites voient leurs propriétés de conduction thermique longitudinale nettement exacerbées lorsque les NTC présentent une amélioration de leur structure cristalline. L'augmentation significative des performances apportées par les tapis de NTC verticalement alignés au sein de ces matériaux nanocomposites anisotropes par rapport aux matrices organiques non chargées est prometteuse et ouvre des pistes de réflexion visant à répondre aux nouvelles exigences de multifonctionnalité des secteurs de l'aéronautique et de l'aérospatial. / Vertically aligned carbon nanotube carpets are potential candidates for applications such as interconnections or thermal interface materials (TIMs). This research work deals with the synthesis of aligned carbon nanotube carpets from the aerosol assisted chemical vapour deposition (CVD) technique, with the elaboration of nanocomposites made of different grades of epoxy matrix infiltrated within these carpets, as well as the study of both longitudinal and transverse mechanical and thermal properties of dry carpets themselves and 1D-nanocomposites separately. The synthesis conditions notably enable to vary characteristics of the differents carpets such as their thickness, their density, the mean external diameter of the carbon nanotubes (CNT), the intertube space and the CNT volume fraction, whereas their crystalline structure can be modified with a high temperature thermal treatment. The main goal of this work is to prove and quantify the effect of some of the characteristics of the carbon nanotubes carpets on both mechanical and thermal properties of the different kinds of CNT carpets and resulting composite materials. The two impregnation methods used, liquid way and infusion, lead to dense CNT carpets with a preserved alignment of the CNT and an homogeneous distribution of these latest within the epoxy system. The CNT volume content is evidenced as the key-parameter exacerbating the mechanical and thermal properties mainly in the longitudinal direction compared with the alignment axis of the CNTs. Moreover the mechanical and thermal conduction properties of the CNT carpets and the 1D-nanocomposites are clearly increased when the crystalline structure of the CNT is improved. The significant increasing of the properties brought by the vertically aligned CNT within these anisotropic 1D-nanocomposites compared with the only organic matrixes is promising and opens new pathways aiming to meet the latest specifications related to multifunctionnality in fields such as aeronautics and aerospace.
|
15 |
Contribution to thermal radiation to dust flame propagation : application to aluminium dust explosions / Étude de la contribution des échanges thermiques radiatifs aux processus de propagation des flammes de poussières : application aux explosions de poussières d’aluminiumBen Moussa, Rim 20 December 2017 (has links)
Ces travaux de thèse sont consacrés à l’examen du rôle du rayonnement thermique dans le processus de propagation des flammes issues de la combustion des particules d’aluminium dans l’air. Le sujet étant complexe et d’un intérêt industriel, il nécessite de prendre en compte le couplage de nombreux phénomènes physico-chimiques afin de prédire finement les conséquences des explosions de poussières. Une analyse bibliographique approfondie est proposée, concernant les mécanismes d’inflammation et de combustion des particules d’aluminium et aussi concernant les connaissances relatives à la propagation des flammes de poussières. La question spécifique de la nature des échanges thermiques et de l’influence du rayonnement thermique est étudiée. La revue bibliographique souligne les approximations et les hypothèses simplificatrices utilisées dans la littérature permettant donc de définir les pistes d’améliorations. Compte tenu des limitations importantes concernant la physique de ces flammes, un outil de simulation de physique numérique nommé « RADIAN », proche de la simulation numérique directe, a été développé proposant un couplage fin entre les différents modes d’échanges thermiques et la combustion pour modéliser la propagation de la flamme dans un nuage de poussières. La méthode des éléments discrets (MED) est utilisée pour modéliser numériquement les échanges radiatifs entre les particules et les échanges conductifs entre gaz et particules. La méthode des différences finies est utilisée pour modéliser numériquement la conduction thermique dans la phase gazeuse et la combustion. Un modèle radiatif est proposé se basant sur la théorie de Mie sur les interactions rayonnement-particules. Les résultats des simulations sont comparés avec des solutions analytiques et des données expérimentales de la littérature. Mais en plus, une étude expérimentale est aussi conduite afin de mesurer la distribution du flux radiatif devant la flamme et la vitesse de combustion laminaire pour des flammes Méthane-Sic, Méthane-Alumine et Al-air. Un bon accord entre les simulations et les expériences est démontré. La loi de Beer-Lambert relative au transfert radiatif devant le front de flamme s’avère inapplicable et une nouvelle solution analytique est proposée. La présence de particules absorbantes du rayonnement promeut la propagation de la flamme. En particulier, il a été montré expérimentalement et confirmé numériquement que les mélanges riches d’AL-air sont susceptibles d’accélérer rapidement. / In this thesis, the role of thermal radiation in aluminum-air flames propagation is studied. The subject being complex and of industrial interest, it requires the coupling of many physiochemical phenomena to accurately predict the consequences of dust explosions. A thorough literature review is proposed about the ignition and the combustion of aluminum particles and about the available theoretical models of dust flames propagation. The specific question of the nature of thermal exchanges and the influence of thermal radiation is studied. The bibliographic review underlines the simplifying assumptions and hypotheses used in the literature making possible the definition of improvement areas. Because of the limited amount of knowledge available to address these questions, a numerical tool “RADIAN” is developed enabling an accurate coupling between the different modes of heat exchange and combustion. The Discrete Element Method (DEM) is used to numerically model the radiative exchanges between particles and the gas-particle thermal conduction. The Finite Difference method is used to numerically model the thermal conduction through the gas phase and combustion. A radiative model based on Mie theory for radiation-particles interactions is incorporated. The results of the simulations are compared with available analytical solutions and experimental data. An original experimental study is also conducted to measure the distribution of irradiance ahead of the flame front and the laminar burning velocity for methane-air-Sic, methane-air-alumina and Al-air flames. A good agreement between numerical simulations and experiments is demonstrated. The Beer-Lambert’s law for radiative transfer in front of the flame front is found to be inapplicable and a new analytical solution is proposed. The presence of absorbing particles may promote the flame propagation. In particular, it is shown experimentally and confirmed theoretically/numerically that Al-air rich mixtures are likely to rapidly accelerate.
|
16 |
Modélisation et caractérisation thermique de machines électriques synchrones à aimants permanents / Thermal modelling of permanent magnet synchronous machineGuedia Guemo, Gilles Romuald 27 February 2014 (has links)
Les machines électriques synchrones à aimants permanents sont susceptibles de rencontrer un disfonctionnement suite à un échauffement non maîtrisé. L’objectif de cette étude est de développer un modèle thermique générique et prédictif pouvant simuler diverses situations d’intérêts: régime permanent, régime transitoire, mode dégradé, entrefer immergé, haute vitesse. Pour cela, la méthode nodale est utilisée pour développer le modèle thermique générique. En parallèle, un banc d’essai et un prototype sont conçus pour valider le modèle. L’étude de sensibilité des résultats du modèle à certains paramètres montrent que certains coefficients de convection, certaines conductances de contact et la conductivité thermique radiale du bobinage ont une influence considérable sur les résultats du modèle. Cependant ces paramètres sont mal connus, car ils sont issus des formules empiriques ou des abaques. Grâce au prototype et au modèle développé, ces paramètres sont identifiés. Trois méthodes d’identification sont testées pour aboutir à une stratégie d’identification: les algorithmes génétiques, la méthode de Gauss-Newton et la méthode de Levenberg-Marquardt. Plusieurs essais sont effectués sur le prototype instrumenté. La mesure des températures à des lieux précis du prototype permet d’identifier les paramètres mal connus et de valider le modèle. / Permanent magnet synchronous machines are likely to break down due to poorly controlled heating. The goal of this study was to develop a generic and predictive thermal model to calculate the temperature of machines during the design phase simulating temperatures at various states. These states include: steady state, transient state, fault mode, axial circulating of a cooling fluid in the air-gap and high speed. The lumped parameter method was used to develop this generic thermal model. Meanwhile, a test bench and a prototype instrumented with thermocouples were manufactured to validate the model at the same time. Sensitivity studies of the results of the model to some parameters demonstrated that some convective coefficients, contact conductances and the thermal conductivity of the winding in the radial direction influenced the model. However, these parameters are poorly known, because empirical formulas or abacus are used to calculate them. Using, the prototype and the developed model, these parameters were identified. Three methods of identification were tested in order to find a strategy for the identification: the genetic algorithms method, the Gauss-Newton method and the Levenberg-Marquardt method. Many tests were done on the prototype. The measure of the temperatures on the specific place allows to identify these parameters and to validate the model.
|
17 |
Procédés de Plasturgie : Approche par des modèles numériques, thermiques et mécaniquesBereaux, Yves 06 January 2012 (has links) (PDF)
Mes activités de recherche se sont centrées sur les procédés de transformation des polymères, essentiellement le procédé d'injection-moulage mais aussi le soufflage et maintenant la peinture. J'ai participé à plusieurs projets de recherche appliquée pluridisciplinaire donc à finalité industrielle. Dans ces projets ma contribution porte sur la modélisation du procédé, que ce soit par l'utilisation de code de calculs ou le développement de modèles numériques à l'aide de logiciels libres. L'originalité de mon travail réside dans la pluridisciplinarité des projets qui mêlent des aspects théoriques et numériques aux aspects expérimentaux; la science des polymères à la thermique, à la mécanique et à la rhéologie. Les modélisations s'appuient sur des mesures expérimentales qui sont, dans les procédés de transformation, particulièrement délicats à isoler et à interpréter. Ces dispositifs expérimentaux représentent une part considérable de l'effort de recherche dans ces projets. Durant ces travaux, j'ai tenté de répondre à des problématiques distinctes : Dans les procédés de plasturgie, la viscoélasticité est finalement assez absente. Lorsqu'elle se manifeste, c'est sous la forme de défauts (instabilités, recirculations) qu'il faut éviter. C'est pourquoi, la plupart des écoulements impliqués dans les procédés sont de type lubrification~: une dimension au moins est petite devant les autres; ce qui atténue de façon effective les effets viscoélastiques. Une illustration frappante en est donnée par les recirculations viscoélastiques créées par la courbure du chenal d'une vis : lorsque le rapport d'aspect de la section augmente, elles s'atténuent et se décalent vers les parois latérales, précisément là où dans la section, aucune dimension n'est petite devant l'autre. Seul le procédé d'extrusion soufflage s'appuie totalement sur les propriétés viscoélastiques du polymère en écoulement, au travers des phénomènes de gonflement et de fluage. Cet écoulement est particulièrement discriminant et doit permettre à terme de déterminer les paramètres matériels d'une loi viscoélastique intégrale en comparant les prédictions des simulation numériques (par le code FEM Polyflow ou la méthode des tubes de courant) aux mesures expérimentales du gonflement et de fluage, devenues réalisables désormais avec notre technique de visualisation par illumination laser. En ce qui concerne le phénomène de plastification dans les monovis d'injection, ce thème de recherche est celui qui a nécessité le plus d'efforts et c'est celui qui est le plus ardu. La difficulté première, celle des observations, est en passe d'être surmontée avec le fourreau à fenêtres qui permet une visualisation inégalée des phénomènes de plastification. Nous allons pouvoir reprendre et vérifier toutes les hypothèses usuelles de la plastification : accélération du lit solide, fonte contiguë ou dispersée, position et épaisseur des films fluides. En ce qui concerne la modélisation numérique du convoyage solide du polymère dans le chenal de la vis. Une autre problématique, très importante dans le domaine industriel de l'automobile ou de la cosmétique, concerne les défauts de surfaces des pièces plastiques injectées. De nombreux facteurs peuvent contribuer à l'apparition de tels défauts. Nous avons étudié les effets thermiques en montrant que même des revêtements métalliques extrêmement fins pouvaient avoir une influence thermique. Qu'en est-il de l'aspect dynamique de l'écoulement et du contact (tension de surface) polymère-métal ? Ce sujet est d'importance pour l'injection moulage classique mais aussi la micro-plasturgie. La simulation numérique de la projection de peinture représente une direction nouvelle de recherche, active en Europe, mais inédite en France, et pour laquelle nous sommes bien placés à l'insa-lyon avec la création récente d'une cabine de peinture pilote. Cela reste toujours de la mécanique des fluides et des polymères mais avec des outils différents (code volumes finis, OpenFOAM, StarCCM). Encore une fois, une analyse des phénomènes prépondérants, notamment dans l'aérodynamique et le champ électrostatique, associée à des mesures expérimentales, devraient aboutir à un modèle simplifié des trajectoires des gouttes et donc de la projection de peinture.
|
18 |
Phonon heat conduction probed by means of an electro-thermal method involving deposited micro and nanowires / Conduction de la chaleur au phonon sondée au moyen d'une méthode électrothermique impliquant des micro et nanofils déposésJaber, Wassim 25 October 2016 (has links)
The context of this PhD is the reduction of sizes involved in material development and the confinement of heat in modern devices, which are known to lead to the apparition of hot spots. The goal is to investigate heat conduction from micro- to nanoscale wide Joule-heated wires standing on flat layered materials. A particular focus is given to the analysis of phonon heat dissipation when departing from the well-known Fourier diffusive conduction and entering the ballistic regime. The manuscript starts with a summary of the main observed effects on the effective thermal conductivity in nanoscale materials, especially in light of the values of thermallyaveraged phonon mean free paths and the associated Knudsen number. Then the advantages and drawbacks of various measurement techniques are discussed. The analysis of the experimental configuration requires 2D analytical and 3D finite-element method based numerical studies of diffusive heat conduction from a finite source into a medium. Limitations of the 3! method due to wire length, substrate geometry and thin oxide layers are highlighted. The electro-thermal setup developed and the procedure used to deposit the devices on top of the samples are then detailed. A set of well-known materials with mean free path ranging from few nanometers to hundreds of nanometers is characterized with microwires. The thermal conduction properties of multilayer materials are investigated. Heat dissipation from finite sources on top of silicon substrates is then measured as a function of temperature. The mean free path is known to become large when temperature decreases. As a result, this configuration provides clues for understanding heat conduction from ballistic sources. The observed behavior is very different from the one predicted by Fourier’s law and shows a strong reduction of the dissipation. It is found that the results are comparable to earlier measurements involving ridges. They are analyzed with various levels of approximations of predictions using the Boltzmann transport equation. The results obtained may be useful in many fields, in particular for electronics and thermoelectric designs. / Le contexte de ce doctorat est la réduction des tailles impliquées dans le développement des matériaux et le confinement de la chaleur dans les dispositifs modernes, qui sont connus pour conduire à l'apparition de points chauds. L'objectif est d'étudier la conduction de la chaleur à partir de fils chauffés par Joule à l'échelle nanométrique et à l'échelle nanométrique, reposant sur des matériaux à couches planes. Une attention particulière est accordée à l'analyse de la dissipation thermique des phonons en partant de la conduction de Fourier bien connue et en entrant dans le régime balistique. Le manuscrit commence par un résumé des principaux effets observés sur la conductivité thermique effective dans les matériaux à l'échelle nanométrique, en particulier à la lumière des valeurs des voies libres moyennes des phonons et du nombre de Knudsen associé. Ensuite, les avantages et les inconvénients des différentes techniques de mesure sont discutés. L'analyse de la configuration expérimentale nécessite des études numériques 2D basées sur la méthode des éléments finis et des éléments finis de la conduction de chaleur par diffusion à partir d'une source finie dans un milieu. Limitations du 3! méthode en raison de la longueur du fil, de la géométrie du substrat et des couches minces d'oxyde sont mises en évidence. La configuration électro-thermique développée et la procédure utilisée pour déposer les dispositifs sur les échantillons sont ensuite détaillées. Un ensemble de matériaux bien connus avec un chemin libre moyen allant de quelques nanomètres à des centaines de nanomètres est caractérisé par des microfils. Les propriétés de conduction thermique des matériaux multicouches sont étudiées. La dissipation thermique des sources finies sur les substrats de silicium est ensuite mesurée en fonction de la température. Le libre parcours moyen est connu pour devenir important lorsque la température diminue. En conséquence, cette configuration fournit des indices pour comprendre la conduction de la chaleur à partir de sources balistiques. Le comportement observé est très différent de celui prédit par la loi de Fourier et montre une forte réduction de la dissipation. On trouve que les résultats sont comparables à des mesures antérieures impliquant des crêtes. Ils sont analysés avec différents niveaux d'approximations de prédictions en utilisant l'équation de transport de Boltzmann. Les résultats obtenus peuvent être utiles dans de nombreux domaines, en particulier pour les conceptions électroniques et thermoélectriques.
|
Page generated in 0.0785 seconds