Spelling suggestions: "subject:"conductive pathways"" "subject:"onductive pathways""
1 |
Design construtal de caminhos de condução assimétricos trifurcadosFagundes, Tadeu Mendonça January 2016 (has links)
O presente trabalho utiliza o método Design Construtal para desenvolver o estudo numérico de uma configuração de caminhos de alta condutividade de geometria trifurcada que minimiza a resistência ao fluxo de calor, quando a área do caminho trifurcado é mantida constante. O objetivo deste trabalho é o estudo da influência da geometria sobre o desempenho térmico do sistema bem como a otimização do mesmo, assim obtendo uma configuração que minimiza a resistência térmica para cada condição imposta. São apresentadas as considerações e hipóteses utilizadas para a análise, obtendo a equação do calor regente e as condições de contorno do problema, bem como a função objetivo. Para a solução numérica da equação da condução do calor, é utilizado o software MATLAB ®, especificamente as ferramentas PDETOOL, Partial Differential Equations Tool, e GA, Algoritmo Genético. A resistência térmica é minimizada para cada grau de liberdade. A cada nível de otimização, a influência do grau de liberdade em questão é estudada, obtendo um mapeamento da importância de cada grau de liberdade sobre o sistema trifurcado. Também são obtidas as configurações ótimas para diferentes frações de área. Posteriormente, é estudado o comportamento da configuração ótima do sistema para diferentes temperaturas do final das bifurcações do sistema, mostrando que, para as temperaturas estudadas neste trabalho, a configuração ótima não se altera, apenas a resistência térmica, com a alteração na temperatura do sumidouro direito sendo mais influente sobre essa, seguida do sumidouro central e, por fim, do sumidouro esquerdo. Finalmente, este trabalho mostra, com esses resultados, que a geometria ótima é aquela que melhor distribui as imperfeições do sistema, de acordo com o princípio da ótima distribuição das imperfeições e, também, possui robustez quanto às pequenas imperfeições inseridas no sistema. / The present work employs Constructal Design method to develop a numerical study of a triforked high conductivity pathway that minimizes the heat flow resistance when the triforked pathway area is kept constant. The objective of this work is the study of the influence of the geometry over the thermal performance of the system as well as the optimization of the latter, thus obtaining a configuration that minimizes the thermal resistance for each imposed condition. The considerations and hypothesis for the analysis are shown, obtaining a reigning heat equation and boundary conditions for the system, as well as the objetctive function (minimization of the maximum temperature). For the numerical solution of the heat conduction equation, it is utilized MATLAB ® software, specifically the PDETOOL, Partial Differential Equations Tool, and GA, Genetic Algorithm, toolboxes. The thermal resistance is minimized for every degree of freedom. In each level of optimization, the influence of the degree of freedom in question is studied, obtaining a mapping of the importance of each degree of freedom over the performance of the triforked pathway. Optimal configurations are also obtained for different area fractions. Posteriorly, the behavior of the optimal geometry is studied for different temperatures of the branches of the system. Results show that, for the temperatures studied in this work, the optimal configuration does not change, only the thermal resistance, with the increase of temperature of the right sink being more influential over it, followed by the temperature of the middle sink and, at last, the temperature of the left sink. Finally, this work shows, with these results, that the optimal geometry is the one that better distributes the imperfections of the systems, which is in accordance to the principle of the optimal distribution of imperfections, while possessing a certain robustness over small imperfections inserted in the system.
|
2 |
Design construtal de caminhos de condução assimétricos trifurcadosFagundes, Tadeu Mendonça January 2016 (has links)
O presente trabalho utiliza o método Design Construtal para desenvolver o estudo numérico de uma configuração de caminhos de alta condutividade de geometria trifurcada que minimiza a resistência ao fluxo de calor, quando a área do caminho trifurcado é mantida constante. O objetivo deste trabalho é o estudo da influência da geometria sobre o desempenho térmico do sistema bem como a otimização do mesmo, assim obtendo uma configuração que minimiza a resistência térmica para cada condição imposta. São apresentadas as considerações e hipóteses utilizadas para a análise, obtendo a equação do calor regente e as condições de contorno do problema, bem como a função objetivo. Para a solução numérica da equação da condução do calor, é utilizado o software MATLAB ®, especificamente as ferramentas PDETOOL, Partial Differential Equations Tool, e GA, Algoritmo Genético. A resistência térmica é minimizada para cada grau de liberdade. A cada nível de otimização, a influência do grau de liberdade em questão é estudada, obtendo um mapeamento da importância de cada grau de liberdade sobre o sistema trifurcado. Também são obtidas as configurações ótimas para diferentes frações de área. Posteriormente, é estudado o comportamento da configuração ótima do sistema para diferentes temperaturas do final das bifurcações do sistema, mostrando que, para as temperaturas estudadas neste trabalho, a configuração ótima não se altera, apenas a resistência térmica, com a alteração na temperatura do sumidouro direito sendo mais influente sobre essa, seguida do sumidouro central e, por fim, do sumidouro esquerdo. Finalmente, este trabalho mostra, com esses resultados, que a geometria ótima é aquela que melhor distribui as imperfeições do sistema, de acordo com o princípio da ótima distribuição das imperfeições e, também, possui robustez quanto às pequenas imperfeições inseridas no sistema. / The present work employs Constructal Design method to develop a numerical study of a triforked high conductivity pathway that minimizes the heat flow resistance when the triforked pathway area is kept constant. The objective of this work is the study of the influence of the geometry over the thermal performance of the system as well as the optimization of the latter, thus obtaining a configuration that minimizes the thermal resistance for each imposed condition. The considerations and hypothesis for the analysis are shown, obtaining a reigning heat equation and boundary conditions for the system, as well as the objetctive function (minimization of the maximum temperature). For the numerical solution of the heat conduction equation, it is utilized MATLAB ® software, specifically the PDETOOL, Partial Differential Equations Tool, and GA, Genetic Algorithm, toolboxes. The thermal resistance is minimized for every degree of freedom. In each level of optimization, the influence of the degree of freedom in question is studied, obtaining a mapping of the importance of each degree of freedom over the performance of the triforked pathway. Optimal configurations are also obtained for different area fractions. Posteriorly, the behavior of the optimal geometry is studied for different temperatures of the branches of the system. Results show that, for the temperatures studied in this work, the optimal configuration does not change, only the thermal resistance, with the increase of temperature of the right sink being more influential over it, followed by the temperature of the middle sink and, at last, the temperature of the left sink. Finally, this work shows, with these results, that the optimal geometry is the one that better distributes the imperfections of the systems, which is in accordance to the principle of the optimal distribution of imperfections, while possessing a certain robustness over small imperfections inserted in the system.
|
3 |
Design construtal de caminhos de condução assimétricos trifurcadosFagundes, Tadeu Mendonça January 2016 (has links)
O presente trabalho utiliza o método Design Construtal para desenvolver o estudo numérico de uma configuração de caminhos de alta condutividade de geometria trifurcada que minimiza a resistência ao fluxo de calor, quando a área do caminho trifurcado é mantida constante. O objetivo deste trabalho é o estudo da influência da geometria sobre o desempenho térmico do sistema bem como a otimização do mesmo, assim obtendo uma configuração que minimiza a resistência térmica para cada condição imposta. São apresentadas as considerações e hipóteses utilizadas para a análise, obtendo a equação do calor regente e as condições de contorno do problema, bem como a função objetivo. Para a solução numérica da equação da condução do calor, é utilizado o software MATLAB ®, especificamente as ferramentas PDETOOL, Partial Differential Equations Tool, e GA, Algoritmo Genético. A resistência térmica é minimizada para cada grau de liberdade. A cada nível de otimização, a influência do grau de liberdade em questão é estudada, obtendo um mapeamento da importância de cada grau de liberdade sobre o sistema trifurcado. Também são obtidas as configurações ótimas para diferentes frações de área. Posteriormente, é estudado o comportamento da configuração ótima do sistema para diferentes temperaturas do final das bifurcações do sistema, mostrando que, para as temperaturas estudadas neste trabalho, a configuração ótima não se altera, apenas a resistência térmica, com a alteração na temperatura do sumidouro direito sendo mais influente sobre essa, seguida do sumidouro central e, por fim, do sumidouro esquerdo. Finalmente, este trabalho mostra, com esses resultados, que a geometria ótima é aquela que melhor distribui as imperfeições do sistema, de acordo com o princípio da ótima distribuição das imperfeições e, também, possui robustez quanto às pequenas imperfeições inseridas no sistema. / The present work employs Constructal Design method to develop a numerical study of a triforked high conductivity pathway that minimizes the heat flow resistance when the triforked pathway area is kept constant. The objective of this work is the study of the influence of the geometry over the thermal performance of the system as well as the optimization of the latter, thus obtaining a configuration that minimizes the thermal resistance for each imposed condition. The considerations and hypothesis for the analysis are shown, obtaining a reigning heat equation and boundary conditions for the system, as well as the objetctive function (minimization of the maximum temperature). For the numerical solution of the heat conduction equation, it is utilized MATLAB ® software, specifically the PDETOOL, Partial Differential Equations Tool, and GA, Genetic Algorithm, toolboxes. The thermal resistance is minimized for every degree of freedom. In each level of optimization, the influence of the degree of freedom in question is studied, obtaining a mapping of the importance of each degree of freedom over the performance of the triforked pathway. Optimal configurations are also obtained for different area fractions. Posteriorly, the behavior of the optimal geometry is studied for different temperatures of the branches of the system. Results show that, for the temperatures studied in this work, the optimal configuration does not change, only the thermal resistance, with the increase of temperature of the right sink being more influential over it, followed by the temperature of the middle sink and, at last, the temperature of the left sink. Finally, this work shows, with these results, that the optimal geometry is the one that better distributes the imperfections of the systems, which is in accordance to the principle of the optimal distribution of imperfections, while possessing a certain robustness over small imperfections inserted in the system.
|
4 |
Projeto construtal de complexos caminhos condutivos para o arrefecimento de corpos submetidos à geração de calorBeckel, Cassia Cris January 2016 (has links)
Problemas de resfriamento de circuitos, presentes nas indústrias de eletrônicos e miniaturizados, têm sido amplamente estudados com o propósito de desenvolver mecanismos capazes de reduzirem a taxa de falha nos equipamentos devido às altas temperaturas. O presente trabalho utiliza o método Design Construtal associado com algoritmos de otimização, busca exaustiva e algoritmo genético, para realizar o estudo numérico de corpos sólidos com geração de calor uniforme onde são inseridos caminhos altamente condutivos em forma de “Y”, “Y-Y”, duplo “Y-Y” e “T”. O objetivo principal das otimizações realizadas consiste em minimizar a resistência ao fluxo de calor, quando as áreas ocupadas pelos materiais de alta e baixa condutividades são mantidas constantes, variando-se os comprimentos e espessuras dos caminhos condutivos. Para a solução numérica da equação da difusão do calor com as condições de contorno estabelecidas em cada caso, foi utilizado o PDETool do software MatLab. A formulação para o caminho condutivo em forma de “Y” apresenta a construção de volumes elementares, mantendo a mesma condutividade térmica para todo o caminho condutivo. Na configuração em forma de duplo “Y – Y” foi utilizado o método de busca exaustiva associado ao algoritmo genético (GA). Nas simulações realizadas com o caminho condutivo em forma de “T”, a configuração apresenta combinações de condutividade térmica diferentes para a base e para a parte superior, enfatizando que a geometria depende das condições impostas pelo ambiente. Para o caso com um volume elementar, a configuração em forma de “Y” degenera-se gerando um caminho condutivo em forma de “U” e com dois volumes, a variação ocorre no comprimento dos ramos do caminho condutivo. Para a configuração com quatro volumes, a configuração ótima tem a forma de “X”. No caso do caminho em forma de “T”, a configuração que minimiza a máxima temperatura em excesso tem a forma de um “I”. Como previsto no princípio da ótima distribuição das imperfeições, a geometria ótima para os casos estudados é aquela que melhor distribui as imperfeições do sistema. / Problems that embody cooling of circuits that appears in electronics and miniaturized industries, have been widely studied to develop mechanisms capable of reducing the failure rate of the equipment due to high temperatures. The present work applies the Constructal Design method associated with optimization algorithms, exhaustive search and genetic algorithm, to perform the numerical study of solid bodies with uniform heat generation in which are inserted high-conducting pathways with “Y”, “Y–Y”, double “Y–Y” and “T” shapes. The main goal of the performed optimizations consists in minimizing the resistance to the heat flux when the occupied areas of high and low conductivity materials are maintained constant, varying the lengths and thickness of conductive paths. For the numerical solution of the heat diffusion equation with the boundary conditions established in each case, it was used the PDETool from MatLab software. The formulation for the conductive pathway with "Y" shape presents the construction of elementary volumes, maintaining the same thermal conductivity across the entire conductive pathway. In the configuration in double “Y–Y” form it was used exhaustive search method associated with genetic algorithm (GA). In the simulations performed with the T-shaped conductive pathway, the configuration provides combinations of different thermal conductivity for the base and the top, emphasizing that the geometry depends on the conditions imposed by the environment. For the case with one elementary volume, the Y-shaped configuration degenerates producing a conductive pathway with U-shape; and with two volumes, the variation occurs in the length of branches of the conductive pathway. For the configuration with four volumes, the optimum configuration has the form of “X”. In the case of T-shaped pathway, the configuration that minimizes the maximal excess of temperature is I-shaped. As predicted by the principle of optimal distribution of the imperfections, the optimal geometry for the cases studied is the one that promotes the best distribution of the imperfections of the system.
|
5 |
Projeto construtal de complexos caminhos condutivos para o arrefecimento de corpos submetidos à geração de calorBeckel, Cassia Cris January 2016 (has links)
Problemas de resfriamento de circuitos, presentes nas indústrias de eletrônicos e miniaturizados, têm sido amplamente estudados com o propósito de desenvolver mecanismos capazes de reduzirem a taxa de falha nos equipamentos devido às altas temperaturas. O presente trabalho utiliza o método Design Construtal associado com algoritmos de otimização, busca exaustiva e algoritmo genético, para realizar o estudo numérico de corpos sólidos com geração de calor uniforme onde são inseridos caminhos altamente condutivos em forma de “Y”, “Y-Y”, duplo “Y-Y” e “T”. O objetivo principal das otimizações realizadas consiste em minimizar a resistência ao fluxo de calor, quando as áreas ocupadas pelos materiais de alta e baixa condutividades são mantidas constantes, variando-se os comprimentos e espessuras dos caminhos condutivos. Para a solução numérica da equação da difusão do calor com as condições de contorno estabelecidas em cada caso, foi utilizado o PDETool do software MatLab. A formulação para o caminho condutivo em forma de “Y” apresenta a construção de volumes elementares, mantendo a mesma condutividade térmica para todo o caminho condutivo. Na configuração em forma de duplo “Y – Y” foi utilizado o método de busca exaustiva associado ao algoritmo genético (GA). Nas simulações realizadas com o caminho condutivo em forma de “T”, a configuração apresenta combinações de condutividade térmica diferentes para a base e para a parte superior, enfatizando que a geometria depende das condições impostas pelo ambiente. Para o caso com um volume elementar, a configuração em forma de “Y” degenera-se gerando um caminho condutivo em forma de “U” e com dois volumes, a variação ocorre no comprimento dos ramos do caminho condutivo. Para a configuração com quatro volumes, a configuração ótima tem a forma de “X”. No caso do caminho em forma de “T”, a configuração que minimiza a máxima temperatura em excesso tem a forma de um “I”. Como previsto no princípio da ótima distribuição das imperfeições, a geometria ótima para os casos estudados é aquela que melhor distribui as imperfeições do sistema. / Problems that embody cooling of circuits that appears in electronics and miniaturized industries, have been widely studied to develop mechanisms capable of reducing the failure rate of the equipment due to high temperatures. The present work applies the Constructal Design method associated with optimization algorithms, exhaustive search and genetic algorithm, to perform the numerical study of solid bodies with uniform heat generation in which are inserted high-conducting pathways with “Y”, “Y–Y”, double “Y–Y” and “T” shapes. The main goal of the performed optimizations consists in minimizing the resistance to the heat flux when the occupied areas of high and low conductivity materials are maintained constant, varying the lengths and thickness of conductive paths. For the numerical solution of the heat diffusion equation with the boundary conditions established in each case, it was used the PDETool from MatLab software. The formulation for the conductive pathway with "Y" shape presents the construction of elementary volumes, maintaining the same thermal conductivity across the entire conductive pathway. In the configuration in double “Y–Y” form it was used exhaustive search method associated with genetic algorithm (GA). In the simulations performed with the T-shaped conductive pathway, the configuration provides combinations of different thermal conductivity for the base and the top, emphasizing that the geometry depends on the conditions imposed by the environment. For the case with one elementary volume, the Y-shaped configuration degenerates producing a conductive pathway with U-shape; and with two volumes, the variation occurs in the length of branches of the conductive pathway. For the configuration with four volumes, the optimum configuration has the form of “X”. In the case of T-shaped pathway, the configuration that minimizes the maximal excess of temperature is I-shaped. As predicted by the principle of optimal distribution of the imperfections, the optimal geometry for the cases studied is the one that promotes the best distribution of the imperfections of the system.
|
6 |
Projeto construtal de complexos caminhos condutivos para o arrefecimento de corpos submetidos à geração de calorBeckel, Cassia Cris January 2016 (has links)
Problemas de resfriamento de circuitos, presentes nas indústrias de eletrônicos e miniaturizados, têm sido amplamente estudados com o propósito de desenvolver mecanismos capazes de reduzirem a taxa de falha nos equipamentos devido às altas temperaturas. O presente trabalho utiliza o método Design Construtal associado com algoritmos de otimização, busca exaustiva e algoritmo genético, para realizar o estudo numérico de corpos sólidos com geração de calor uniforme onde são inseridos caminhos altamente condutivos em forma de “Y”, “Y-Y”, duplo “Y-Y” e “T”. O objetivo principal das otimizações realizadas consiste em minimizar a resistência ao fluxo de calor, quando as áreas ocupadas pelos materiais de alta e baixa condutividades são mantidas constantes, variando-se os comprimentos e espessuras dos caminhos condutivos. Para a solução numérica da equação da difusão do calor com as condições de contorno estabelecidas em cada caso, foi utilizado o PDETool do software MatLab. A formulação para o caminho condutivo em forma de “Y” apresenta a construção de volumes elementares, mantendo a mesma condutividade térmica para todo o caminho condutivo. Na configuração em forma de duplo “Y – Y” foi utilizado o método de busca exaustiva associado ao algoritmo genético (GA). Nas simulações realizadas com o caminho condutivo em forma de “T”, a configuração apresenta combinações de condutividade térmica diferentes para a base e para a parte superior, enfatizando que a geometria depende das condições impostas pelo ambiente. Para o caso com um volume elementar, a configuração em forma de “Y” degenera-se gerando um caminho condutivo em forma de “U” e com dois volumes, a variação ocorre no comprimento dos ramos do caminho condutivo. Para a configuração com quatro volumes, a configuração ótima tem a forma de “X”. No caso do caminho em forma de “T”, a configuração que minimiza a máxima temperatura em excesso tem a forma de um “I”. Como previsto no princípio da ótima distribuição das imperfeições, a geometria ótima para os casos estudados é aquela que melhor distribui as imperfeições do sistema. / Problems that embody cooling of circuits that appears in electronics and miniaturized industries, have been widely studied to develop mechanisms capable of reducing the failure rate of the equipment due to high temperatures. The present work applies the Constructal Design method associated with optimization algorithms, exhaustive search and genetic algorithm, to perform the numerical study of solid bodies with uniform heat generation in which are inserted high-conducting pathways with “Y”, “Y–Y”, double “Y–Y” and “T” shapes. The main goal of the performed optimizations consists in minimizing the resistance to the heat flux when the occupied areas of high and low conductivity materials are maintained constant, varying the lengths and thickness of conductive paths. For the numerical solution of the heat diffusion equation with the boundary conditions established in each case, it was used the PDETool from MatLab software. The formulation for the conductive pathway with "Y" shape presents the construction of elementary volumes, maintaining the same thermal conductivity across the entire conductive pathway. In the configuration in double “Y–Y” form it was used exhaustive search method associated with genetic algorithm (GA). In the simulations performed with the T-shaped conductive pathway, the configuration provides combinations of different thermal conductivity for the base and the top, emphasizing that the geometry depends on the conditions imposed by the environment. For the case with one elementary volume, the Y-shaped configuration degenerates producing a conductive pathway with U-shape; and with two volumes, the variation occurs in the length of branches of the conductive pathway. For the configuration with four volumes, the optimum configuration has the form of “X”. In the case of T-shaped pathway, the configuration that minimizes the maximal excess of temperature is I-shaped. As predicted by the principle of optimal distribution of the imperfections, the optimal geometry for the cases studied is the one that promotes the best distribution of the imperfections of the system.
|
Page generated in 0.0437 seconds