• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A simulation study on quality assessment of the Normalized Site Attenuation (NSA) measurements for Open-Area Test Site using statistical models

Liang, Kai-Jie 15 July 2005 (has links)
Open site measurement on the electromagnetic interference is the most direct and universally accepted standard approach for measuring radiated emissions from an equipment or the radiation susceptibility of a component or equipment. In general, if the NSA measurements we recorded at different frequencies do not exceed the ideal value +-4dB, we would regard this site as a normalized site, otherwise it is not a normalized site as long as there is one measurement exceeds the range. A one change point model had been used to fit observed measurements. For each set of observations as well as the corresponding ideal values, we have the estimated regression parameter for a one change point model. Our ideal is using the difference of regression parameters between ideal values and observations to assess whether a site is qualified for measuring EMI or not. The assessment tool for whether the testing site is normalized or not is referred to the confidence region for the regression model parameters. Finally, according to the data collected in this experiment, the estimated parameters obtained from the observations will be used to do further statistical analyses and comparing the qualities of the four different testing sites.
2

Analysis of Longitudinal Data in the Case-Control Studies via Empirical Likelihood

Jian, Wen 09 June 2006 (has links)
The case-control studies are primary tools for the study of risk factors (exposures) related to the disease interested. The case-control studies using longitudinal data are cost and time efficient when the disease is rare and assessing the exposure level of risk factors is difficult. Instead of GEE method, the method of using a prospective logistic model for analyzing case-control longitudinal data was proposed and the semiparametric inference procedure was explored by Park and Kim (2004). In this thesis, we apply an empirical likelihood ratio method to derive limiting distribution of the empirical likelihood ratio and find one likelihood-ratio based confidence region for the unknown regression parameters. Our approach does not require estimating the covariance matrices of the parameters. Moreover, the proposed confidence region is adapted to the data set and not necessarily symmetric. Thus, it reflects the nature of the underlying data and hence gives a more representative way to make inferences about the parameter of interest. We compare empirical likelihood method with normal approximation based method, simulation results show that the proposed empirical likelihood ratio method performs well in terms of coverage probability.
3

CONFIDENCE REGIONS FOR OPTIMAL CONTROLLABLE VARIABLES FOR THE ROBUST PARAMETER DESIGN PROBLEM

Cheng, Aili January 2012 (has links)
In robust parameter design it is often possible to set the levels of the controllable factors to produce a zero gradient for the transmission of variability from the noise variables. If the number of control variables is greater than the number of noise variables, a continuum of zero-gradient solutions exists. This situation is useful as it provides the experimenter with multiple conditions under which to configure a zero gradient for noise variable transmission. However, this situation requires a confidence region for the multiple-solution factor levels that provides proper simultaneous coverage. This requirement has not been previously recognized in the literature. In the case where the number of control variables is greater than the number of noise variables, we show how to construct critical values needed to maintain the simultaneous coverage rate. Two examples are provided as a demonstration of the practical need to adjust the critical values for simultaneous coverage. The zero-gradient confidence region only focuses on the variance, and there are in fact many such situations in which focus is or could be placed entirely on the process variance. In the situation where both mean and variance need to be considered, a general confidence region in control variables is developed by minimizing weighted mean square error. This general method is applicable to many situations including mixture experiments which have an inherit constraint on the control factors. It also gives the user the flexibility to put different weights on the mean and variance parts for simultaneous optimization. It turns out that the same computational algorithm can be used to compute the dual confidence region in both control factors and the response variable. / Statistics
4

A Study of the Calibration Regression Model with Censored Lifetime Medical Cost

Lu, Min 03 August 2006 (has links)
Medical cost has received increasing interest recently in Biostatistics and public health. Statistical analysis and inference of life time medical cost have been challenging by the fact that the survival times are censored on some study subjects and their subsequent cost are unknown. Huang (2002) proposed the calibration regression model which is a semiparametric regression tool to study the medical cost associated with covariates. In this thesis, an inference procedure is investigated using empirical likelihood ratio method. The unadjusted and adjusted empirical likelihood confidence regions are constructed for the regression parameters. We compare the proposed empirical likelihood methods with normal approximation based method. Simulation results show that the proposed empirical likelihood ratio method outperforms the normal approximation based method in terms of coverage probability. In particular, the adjusted empirical likelihood is the best one which overcomes the under coverage problem.
5

Determinação da região robusta de estabilidade e de desempenho inspirada nos princípios da estatística clássica.

SILVA, José Nilton. 08 November 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-11-08T12:05:44Z No. of bitstreams: 1 JOSÉ NILTON SILVA - TESE (PPGEQ) 2013.pdf: 1910479 bytes, checksum: 59c6bfc5fdbee46bc17470e9b2c8c2e5 (MD5) / Made available in DSpace on 2018-11-08T12:05:44Z (GMT). No. of bitstreams: 1 JOSÉ NILTON SILVA - TESE (PPGEQ) 2013.pdf: 1910479 bytes, checksum: 59c6bfc5fdbee46bc17470e9b2c8c2e5 (MD5) Previous issue date: 2013-08-01 / Este trabalho trata do desenvolvimento de uma metodologia baseada nos conceitos clássicos de estatística e probabilidade para a análise e avaliação da robustez da estabilidade e do desempenho de sistemas de controle, particularmente àqueles que usam o PID (Proporcional, Integral, Derivativo) como lei de controle. Visando estabelecer as condições para a aplicação da metodologia, um sistema de identificação do processo foi desenvolvido de forma recursiva, no qual modelos de convolução e fenomenológico foram empregados como representação do modelo e processo, agrupado a um procedimento de auto sintonia, necessário para considerar os parâmetros de sintonia como variáveis aleatórias e, por conseguinte as raízes da equação característica do sistema em malha fechada.O mapeamento da região de robustez tem sido realizado a partir das raízes da equação característica, considerando a distância estatística como a métrica representativa da robustez da estabilidade a qual permite estabelecer a região com certo grau de significância.Os resultados obtidos demonstram o potencial analítico exigido pela metodologia, permitindo também a análise online, com baixo esforço computacional e operacional mostrando ser um poderoso instrumento de avaliação de sistema de controle. / This study discusses the development of a methodology based on classical concepts of statistics and probability to analyze and evaluate the robustness of the stability and performance of the control system, particularly those that use the PID as control law. To establish the conditions for the application of the methodology, a recursive system identification method process was developed, in which convolution and phenomenological models were used to represent model and process, together with a self-tuning procedure that is necessary to consider tuning parameters as random variables, and hence the roots of the characteristic equation of the closed loop system. The mapping of the region of robustness has been achieved from the roots of the characteristic equation, considering the statistical distance as the metric represented to the robustness of stability which allows the region to establish a degree of significance. The results obtained demonstrate the potential analytical and evaluation required by the methodology, allowing such analysis also "online" with low computational effort and operational proving to be a powerful tool in the analysis of control system.
6

多變量模擬輸出之統計分析

許淑卿, XU, SHU-GING Unknown Date (has links)
本論文共一冊,分八章八節。 內容:本論文所擬探討之對象為多變量統計分配函數模擬(Simulation)之最佳停止 法則問題(Optimal Stopping Rule Problem ),此類問題之目的在於如何利用盡量 小的樣本數之觀察值來求得未知母數(Unknoron Parameter)的信區間(域)(Co- nfidence interval )(Confidence Region),而此信賴區間(域)之寬度(Width )及包含機率(Coverage Probability)均已事先指定。 以往研究對象多傴限於單變量統計分配函數,而多變量統計分配函數模擬之最佳停止 法則問題,仍尚在研究階段,因此本論文之重點乃在於探討如何求得滿足最佳停止法 則之最小樣本數。在此以多變量常態分配函數為重心,並進而嗜試推廣至其他多數量 統計分配函數。
7

Maximum de vraisemblance empirique pour la détection de changements dans un modèle avec un nombre faible ou très grand de variables / Maximum empirical likelihood for detecting the changes in a model with a low or very large number of variables

Salloum, Zahraa 19 January 2016 (has links)
Cette thèse est consacrée à tester la présence de changements dans les paramètres d'un modèle de régression non-linéaire ainsi que dans un modèle de régression linéaire en très grande dimension. Tout d'abord, nous proposons une méthode basée sur la vraisemblance empirique pour tester la présence de changements dans les paramètres d'un modèle de régression non-linéaire. Sous l'hypothèse nulle, nous prouvons la consistance et la vitesse de convergence des estimateurs des paramètres de régression. La loi asymptotique de la statistique de test sous l'hypothèse nulle nous permet de trouver la valeur critique asymptotique. D'autre part, nous prouvons que la puissance asymptotique de la statistique de test proposée est égale à 1. Le modèle épidémique avec deux points de rupture est également étudié. Ensuite, on s'intéresse à construire les régions de confiance asymptotiques pour la différence entre les paramètres de deux phases d'un modèle non-linéaire avec des regresseurs aléatoires en utilisant la méthode de vraisemblance empirique. On montre que le rapport de la vraisemblance empirique a une distribution asymptotique χ2. La méthode de vraisemblance empirique est également utilisée pour construire les régions de confiance pour la différence entre les paramètres des deux phases d'un modèle non-linéaire avec des variables de réponse manquantes au hasard (Missing At Random (MAR)). Afin de construire les régions de confiance du paramètre en question, on propose trois statistiques de vraisemblance empirique : la vraisemblance empirique basée sur les données cas-complète, la vraisemblance empirique pondérée et la vraisemblance empirique par des valeurs imputées. On prouve que les trois rapports de vraisemblance empirique ont une distribution asymptotique χ2. Un autre but de cette thèse est de tester la présence d'un changement dans les coefficients d'un modèle linéaire en grande dimension, où le nombre des variables du modèle peut augmenter avec la taille de l'échantillon. Ce qui conduit à tester l'hypothèse nulle de non-changement contre l'hypothèse alternative d'un seul changement dans les coefficients de régression. Basée sur les comportements asymptotiques de la statistique de rapport de vraisemblance empirique, on propose une simple statistique de test qui sera utilisée facilement dans la pratique. La normalité asymptotique de la statistique de test proposée sous l'hypothèse nulle est prouvée. Sous l'hypothèse alternative, la statistique de test diverge / In this PHD thesis, we propose a nonparametric method based on the empirical likelihood for detecting the change in the parameters of nonlinear regression models and the change in the coefficient of linear regression models, when the number of model variables may increase as the sample size increases. Firstly, we test the null hypothesis of no-change against the alternative of one change in the regression parameters. Under null hypothesis, the consistency and the convergence rate of the regression parameter estimators are proved. The asymptotic distribution of the test statistic under the null hypothesis is obtained, which allows to find the asymptotic critical value. On the other hand, we prove that the proposed test statistic has the asymptotic power equal to 1. The epidemic model, a particular case of model with two change-points, under the alternative hypothesis, is also studied. Afterwards, we use the empirical likelihood method for constructing the confidence regions for the difference between the parameters of a two-phases nonlinear model with random design. We show that the empirical likelihood ratio has an asymptotic χ2 distribu- tion. Empirical likelihood method is also used to construct the confidence regions for the difference between the parameters of a two-phases nonlinear model with response variables missing at randoms (MAR). In order to construct the confidence regions of the parameter in question, we propose three empirical likelihood statistics : empirical likelihood based on complete-case data, weighted empirical likelihood and empirical likelihood with imputed va- lues. We prove that all three empirical likelihood ratios have asymptotically χ2 distributions. An another aim for this thesis is to test the change in the coefficient of linear regres- sion models for high-dimensional model. This amounts to testing the null hypothesis of no change against the alternative of one change in the regression coefficients. Based on the theoretical asymptotic behaviour of the empirical likelihood ratio statistic, we propose, for a deterministic design, a simpler test statistic, easier to use in practice. The asymptotic normality of the proposed test statistic under the null hypothesis is proved, a result which is different from the χ2 law for a model with a fixed variable number. Under alternative hypothesis, the test statistic diverges

Page generated in 0.0817 seconds