1 |
以無母數統計方法探討迴歸模式中淺差項之研究崔洲英, Cui, Zhou-Ying Unknown Date (has links)
第一章緒論,含研究動機及目的,本文結構。第二章含Brown-Mood的迴歸參數估計法
,修正後的估計法,檢定迴歸參數法,在虛無假設下的近似分配及信賴區間推定法。
第三章含Daniel的迴歸參數檢定法,檢定統計量的分配,獨立變數可重複下的修正檢
定統計量的分配。第四章提出依據殘差項符號為檢定標準的方法,檢定統計量的分配
、信賴區間,一些特殊情況與應用。第五章針對所提的三種方法一一比較、分析。第
六章結論。
|
2 |
99課綱中「信賴區間」單元之教材設計與學生學習成效評估探討 / On Study Material Design and Students’ Learning Assessment for Confidence Interval Based on the 99 Curriculum黃聖峯 Unknown Date (has links)
本研究主要是針對高中數學課程中「信賴區間」的這個單元,依據99 課綱中的課程規劃,設計出一套專題式的研究教材,並以筆者所任教高中的高二及高三學生作為研究對象,進行專題性的課程授課,且對其學習成果進行評量。主要研究結果如下:
一、高三學生雖已進行過「信賴區間」及其先備知識之授課,但前測的成績並不理想。
二、高二與高三學生經由筆者授課教學後,其後測成績均較前測成績有非常明顯之進步,不過高二與高三學生的後測成績並無顯著差異。
三、高二自然組與高二社會組學生經由筆者授課教學後,其學習成效亦無顯著差異,但社會組學生學習上普遍較為認真,後測成績稍高於自然組。
四、高三自然組與高三社會組學生經由筆者授課教學後,其後測成績具顯著差異,而進步成績的學習成效亦具有顯著差異,自然組優於社會組。
五、依高中數學學習成就分成高分群、中分群與低分群三群,雖然在前測與後測成績表現上顯著不同,但進步的成績則三群並無顯著差異。
此外,筆者於本次研究中也對學生問卷調查一些筆者有興趣的相關議題,並進行問卷分析,得到以下結果:
一、對於本研究所編撰「信賴區間」之課程教材,學生普遍能夠接受且瞭解,並知曉「信賴區間」在生活上的用處,且能解讀其資訊。唯實務面上,他們對「信賴區間」之學習則持可有可無的態度。
二、本次研究的授課方式對於自然組與社會組學生的接受程度是具有差異的,其中自然組學生較能接受本次非傳統型的授課方式。
三、學生普遍認為高中數學中,「非統計類數學課程」是比較有趣的,「統計類數學課程」則在學習上具相對困難性。而在統計的課程中,「信賴區間」倒是比較感興趣的這單元。
整體而言,本次研究對學生進行信賴區間的教學結果,是具有學習成效的。 / Based on the 99 Curriculum Guidelines for the Senior High School Math, a special set of study material for Confidence Interval was composed. Eleventh and twelfth grade students from a girl’s senior high school were recruited voluntarily and lectured, and their learning performance were evaluated before and after the completion of the lecture. The primary findings are as the following:
1. Though twelfth grade students have already studied Confidence Interval before the lecture, their pre-test scores were still low.
2. On the average, both eleventh and twelfth grade students performed better after the lecture, and no significant differences were observed between them.
3. For the eleventh grade students, no significant differences were observed between social science and natural science groups. However, students in social science group appeared to work harder, and their post-test results were slightly better than those in natural science group.
4. For the twelfth grade students, significant differences were observed between social science and natural science groups. Natural science group students appeared to outperform their counterparts in social science group.
5. Among the top third, the middle third, and the bottom third of all the participating students, although their pre-test and post-test scores differed significantly, the differences between the two tests were not significant.
In addition, some secondary issues were also explored, and the related findings are summarized as follows:
1. Students showed appreciation for the study material, understood the concept of Confidence Interval better after the lecture and even realize how to apply the concept to their daily life. Surprisingly, however, they didn’t think learning Confidence Interval would make any difference in their life.
2. Students in the natural science group appeared to have greater acceptance toward the unconventional teaching method than those in the social science group.
3. For the topics covered in senior high school math, students generally considered those unrelated to statistics more interesting, and thought that statistics-related topics were more difficult to learn. However, among the statistics-related topics, Confidence Interval was the most intriguing one.
In conclusion, this study reveals that the experimental teaching approach concerning Confidence Interval are apparently positive and effective.
|
3 |
多變量模擬輸出之統計分析許淑卿, XU, SHU-GING Unknown Date (has links)
本論文共一冊,分八章八節。
內容:本論文所擬探討之對象為多變量統計分配函數模擬(Simulation)之最佳停止
法則問題(Optimal Stopping Rule Problem ),此類問題之目的在於如何利用盡量
小的樣本數之觀察值來求得未知母數(Unknoron Parameter)的信區間(域)(Co-
nfidence interval )(Confidence Region),而此信賴區間(域)之寬度(Width
)及包含機率(Coverage Probability)均已事先指定。
以往研究對象多傴限於單變量統計分配函數,而多變量統計分配函數模擬之最佳停止
法則問題,仍尚在研究階段,因此本論文之重點乃在於探討如何求得滿足最佳停止法
則之最小樣本數。在此以多變量常態分配函數為重心,並進而嗜試推廣至其他多數量
統計分配函數。
|
4 |
門檻式自動迴歸模型參數之近似信賴區間 / Approximate confidence sets for parameters in a threshold autoregressive model陳慎健, Chen, Shen Chien Unknown Date (has links)
本論文主要在估計門檻式自動迴歸模型之參數的信賴區間。由線性自動迴歸
模型衍生出來的非線性自動迴歸模型中,門檻式自動迴歸模型是其中一種經常會被應用到的模型。雖然,門檻式自動迴歸模型之參數的漸近理論已經發展了許多;但是,相較於大樣本理論,有限樣本下參數的性質討論則較少。對於有限樣本的研究,Woodroofe (1989) 提出一種近似法:非常弱近似法。 Woodroofe 和 Coad (1997) 則利用此方法去架構一適性化線性模型之參數的修正信賴區間。Weng 和 Woodroofe (2006) 則將此近似法應用於線性自動迴歸模型。這個方法的應用始於定義一近似樞紐量,接著利用此方法找出近似樞紐量的近似期望值及近似變異數,並對此近似樞紐量標準化,則標準化後的樞紐量將近似於標準常態分配,因此得以架構參數的修正信賴區間。而在線性自動迴歸模型下,利用非常弱展開所導出的近似期望值及近似變異數僅會與一階動差及二階動差的微分有關。因此,本論文的研究目的就是在樣本數為適當的情況下,將線性自動迴歸模型的結果運用於門檻式自動迴歸模型。由於大部分門檻式自動迴歸模型的動差並無明確之形式;因此,本研究採用蒙地卡羅法及插分法去近似其動差及微分。最後,以第一階門檻式自動迴歸模型去配適美國的國內生產總值資料。 / Threshold autoregressive (TAR) models are popular nonlinear extension of the linear autoregressive (AR) models. Though many have developed the asymptotic theory for parameter estimates in the TAR models, there have been less studies about the finite sample properties. Woodroofe (1989) and Woodroofe and Coad (1997) developed a very weak approximation and used it to construct corrected confidence sets for parameters in an adaptive linear model. This approximation was further developed by Woodroofe and Coad (1999) and Weng and Woodroofe (2006), who derived the corrected confidence sets for parameters in the AR(p) models and other adaptive models. This approach starts with an approximate pivot, and employs the very weak expansions to determine the mean and variance corrections of the pivot. Then, the renormalized pivot is used to form corrected confidence sets. The correction terms have simple forms, and for AR(p) models it involves only the first two moments of the process and the derivatives of these moments. However, for TAR models the analytic forms for moments are known only in some cases when the autoregression function has special structures. The goal of this research is to extend the very weak method to the TAR models to form corrected confidence sets when sample size is moderate. We propose using the difference quotient method and Monte Carlo simulations to approximate the derivatives. Some simulation studies are provided to assess the accuracy of the method. Then, we apply the approach to a real U.S. GDP data.
|
5 |
可加性模型與拔靴法在臺灣地區小型商用車市場需求之應用研究呂明哲, Lu, Ming Che Unknown Date (has links)
本文採用可加性模型分析法建立台灣地區小型商用車市場之需求模型,並
引進Box-Jenkins時間序列模型處理具自我相關之誤差項,以利進行拔靴
推論設計時,能拔靴白干擾(bootstrapping white noise),即重抽樣白
干擾的經驗分配。在此次研究過程中,除配適Box-Jenkins時間序列模型
外,所有分析步驟都是完全自動的,不須作假設和檢驗的工作,所以可降
低傳統上因統計人員主觀判斷錯誤所造成的估計偏誤。可加性模型改進傳
統迴歸模型須先假設模型形式的限制,可從商用車實證分析中,直接由資
料配適平滑函數,顯見其合理性。拔靴法免除傳統推論程序須強使隨機干
擾項分配為常態分配或漸近常態分配之束縛,改由殘差經驗分配模擬隨機
干擾項分配行為,在推論商用車市場上,也獲得不錯的結果。
|
6 |
所得不均度之模糊測量-以台灣所得分配為例吳鎮安, Wu Chen Un Unknown Date (has links)
傳統的不均度指標對於不均度的排序皆是精確而不含糊的,在Lorenz曲線相交的情況下,無法使用Lorenz準則判別不均度優劣,若使用不均度指標則可能產生不一致的排序結果,為了解決此一困境,本研究沿用Basu(1987)與Ok(1995,1996)的研究架構,修改其所得不均度的模糊測量方法,並力求將相關的模糊理論研究方法應用在所得不均度的議題上。
本文實證部分主要使用1980年至2002年中華民國行政院主計處「家庭收支調查報告」的資料,計算出家戶與個人資料的所得不均度指標值。結果發現,若考慮個人對於不均度感受上的模糊性,在家戶所得方面,80年代至90年代以後不均度顯著惡化,而個人所得分配則無明顯差異。而迴歸分析結果顯示,妻子勞動參與率上升、戶內就業人數比例增加,社福支出增加均有助於改善家戶所得不均的情況,而就業者平均教育程度上升與失業率的增加會加深家戶所得不均度。考慮不同的不均度指標間存在著模糊性,亦即將不均度指標視為模糊數(fuzzy number),而將傳統迴歸分析延伸至模糊迴歸分析,所預測的結果不再是一個精確的點,而是一個模糊區間,如此更切合實際所得分配狀況。最後,對於1993年至1997年不均度的模糊比較結果,討論了語意表示與信賴區間兩種不同的解模糊方法。而不同機制(隸屬度函數與不均度指標的不同)下的模糊排序結果可能產生不一致,本文也引用了文獻上的方法加以解決。值得注意的是,利用各種模糊關係的總和排序,與主計處每年根據家戶總可支配所得五等分位資料所計算的Gini係數排序略有出入,顯示出更客觀的排序結果。
|
7 |
簡單順序假設波松母數較強檢定力檢定研究 -兩兩母均數差 / More Powerful Tests for Simple Order Hypotheses in Poisson Distributions -The differences of the parameters孫煜凱, Sun, Yu-Kai Unknown Date (has links)
波松分配(Poisson Distribution)常用在單位時間或是區間內,計算對有興趣之某隨機事件次數(或是已知事件之頻率),例如:速食餐廳的單位時間來客數,又或是每段期間內,某天然災害的發生次數,可以表示為某一特定事件X服從波松分配,若lambda為單位事件發生次數或是平均次數,我們稱lambda為此波松分配之母數,記作Poisson(lambda),其中lambda屬於實數。
今天我們若想要探討由兩個服從不同波松分配抽取的隨機變數,如下列所述:令X={(X1,X2)}為一集合,其中Xi為X(i,1),X(i,2),...,X(i,ni)~Poisson(lambda(i)),i=1,2。欲探討兩波松分配之均數是否相同或相差小於某個常數d時,考慮以下檢定:H0:lambda2-lambda1<=d與H0:lambda2-lambda1>d,對於此問題可以使用的檢定方法有Przyborwski和Wilenski(1940)提出的條件檢定(Conditional test,C-test)或K.Krishnamoorthy與Jessica Thomson(2002)提出的精確性檢定(Exact test,E-test),其中的精確性檢定為一個非條件檢定(Unconditional Test);K.Krishnamoorthy與Jessica Thomson比較條件檢定與精確性檢定的p-value皆小於顯著水準(apha),而精確性檢定的檢定力不亞於條件檢定,因此精確性檢定比條件檢定更適合上面所述之假設問題。
Roger L.Berger(1996)提出一個以信賴區間的p-value所建立的較強力檢定,而目前只用於檢定兩二項分配(Binomial Distribution)的機率參數p是否相同為例,然而Berger在文中提到,較強力檢定比非條件檢定有更好的檢定力,而且要求的計算時間較少,可以提升檢定的效率。
本篇論文我們希望在固定apha與d時檢定的問題,建立一個兩波松分配均數顯著水準為apha的較強力檢定。
利用Roger L.Berger與Dennis D.Boos(1994)提出以信賴區間的p-value方法,建立波松分配兩兩母均數差的較強力檢定;研究發現此較強力檢定與精確性檢定的p-value皆小於apha,然而我們的檢定的檢定力皆不亞於精確性檢定所計算得出的檢定力,然而其apha及虛無假設皆需要善加考慮以本篇研究來看,當檢定為單尾檢定時,若apha<0.01,我們的較強力檢定沒有辦法找到比精確性檢定更好地拒絕域,換言之,此時較強力檢定與精確性檢定的檢定力將會相等。 / Poisson Distribution is used to calculate the probability of a certain phenomenon which attracted by researcher. If we want to test two random variable in an experiment .Therefore ,let X={(X1,X2)} be independent samples ,respectively ,from Poisson distribution ,also X(i,1),X(i,2),...,X(i,ni)~Poisson(lambda(i)),i=1,2.
The problem of interest here is to test:
H0:lambda2-lambda1<=d and H0:lambda2-lambda1>d,
where 0<apha<1/2 ,and let Y1 equals sum of X1 and Y2 equals sum of X2, where apha ,lambda,d be fixed.
In this problem of hypothesis testing about two Poisson means is addressed by the conditional test.However ,the exact method of testing based on the test statistic considered in K.Krishnamoorthy,Jessica Thomson(2002) also commonly used.
Roger L.Berger ,Dennis D.Boos(1994) give a new way to calculate
p-value,which replace the old method ,called it a valid p-value .In 1996, Roger L.Berger used the new way to propose a new test for two parameter of binomial distribution which is more powerful than exact test. In the other hand, Roger L.Berger also explain the unconditional test is more suitable than the conditional test.
In this paper,we propose a new method for two parameter of Poisson distribution which revise from Roger L.Berger’s method. The result we obtain that our new test is really get a much bigger rejection region.We found when the fixed increasing ,the set of more powerful test increasing, and when the fixed power increasing ,the required sample size decreasing.
|
8 |
壽險公司責任準備金涉險值之估計 / The Estimation of Value at Risk for the Reserve of Life/Health Insurance Company詹志清, Chihching Chan Unknown Date (has links)
中文摘要
在本文中,我們依據模擬的風險因子變動,包括死亡率風險,利率風險,解約率風險以及模型的參數風險,來估計第一個保單年度的期末責任準備金之涉險值 (Value at Risk)。本文中,雖僅計算生死合險保單的準備金之涉險值,但是本文所提供的方法以及計算過程可以很容易的應用到其它險種,甚至配合資產面的考量來計算保險公司盈餘(Surplus)的涉險值,進而作為清償能力的監測系統。
本文的特點包括下列幾項:第一,本文提供了一個不同於傳統短期間(Short Horizon)的涉險值計算方式,來估計壽險商品的保單責任準備金(Policy Reserve)的涉險值。第二,本文利用生命表來估計死亡率風險所造成的涉險值。第三,我們利用隨機利率模型來捕捉隨機利率對於責任準備金涉險值的影響。第四,我們考慮解約率對於責任準備金涉險值的影響,值得注意的是,在我們的解約率模型中,引入的利率對於解約率的影響。第五,本文亦考慮風險因子模型當中的參數風險對於涉險值的影響。最後,我們利用無母數方法計算出涉險值的信賴區間,而信賴區間的估計在模擬過程當中尤其重要,因為它可以用來決定模擬次數的多寡。
本文包含六節:第一節為導論。第二節為計算死亡率風險的責任準備金涉險值。第三節是計算加上利率風險後責任準備金涉險值的變化。第四節則為加上解約率後對涉險值的影響。第五節為計算涉險值的信賴區間。第六節是我們的結論以及後續研究的方向探討。
本文包含六節:第一節為導論。第二節為計算死亡率風險的責任準備金涉險值。第三節是計算加上利率風險後責任準備金涉險值的變化。第四節則為加上解約率後對涉險值的影響。第五節為計算涉險值的信賴區間。第六節是我們的結論以及後續研究的方向探討。 / ABSTRACT
In this paper, we estimate the VAR of life insurer's terminal reserve of the first policy year by the simulated risk factors, including mortality risk, interest rate risk, lapse rate risk, and estimation risks, of future twenty years. We found that the difference between the VAR under the mortality risk and the interest rate risk is very large because interest rate is a stochastic process but not mortality rate. Thus, the dispersion of interest rate is more then mortality rate. In addition, the VAR will reduce a lot after adding the impact of lapses because the duration of the reserve reduced. If we neglect the impact of lapses to VAR, we will overestimate the VAR significantly.
The features of this paper are as follows. First, we provide an approach to measure the VAR of a life insurer's reserve, and it is rather different from traditional VAR with short horizons. Second, we use mortality table to estimate the VAR of a life insurer's reserve. Third, we use stochastic interest rate model to capture the effect of random interest rate to the VAR of a life insurer's reserve. Fourth, we relate the future cash outflows to interest rate and produce a reasonable estimator of VAR. Fifth, we consider the effect of estimation errors to the VAR of a life insurer's reserve. Last, we calculate the confidence interval of the VAR estimates of the policy reserves.
This paper consists of six sections. The first section is an introduction. In the second section, we present the method used to estimate the variance of the mortality rate and then estimate the VAR of reserves from these variances. In the third section, we explore how to use stochastic interest rate model to estimate the reserve's VAR and the VAR associated with the parameter risk of the interest rate model. In the fourth section, we analyze the contribution of the lapse rate risk and the parameter risk of the lapse rate model to the reserve's VAR. We also analyze the relative significance of the interest rate risk, the lapse rate risk, and the mortality rate risk in terms of their marginal contributions to the VAR of an insurer's reserves in this section. In the fifth section, we calculate the confidence intervals of the VAR estimates discussed in the previous sections. The last section is the conclusion section containing our conclusions and discussions about potential future researches.
|
Page generated in 0.0156 seconds