Spelling suggestions: "subject:"conformal ransformations"" "subject:"conformal detransformations""
1 |
Conformal transformations, curvature, and energyLigo, Richard G. 01 May 2017 (has links)
Space curves have a variety of uses within mathematics, and much attention has been paid to calculating quantities related to such objects. The quantities of curvature and energy are of particular interest to us. While the notion of curvature is well-known, the Mobius energy is a much newer concept, having been first defined by Jun O'Hara in the early 1990s. Foundational work on this energy was completed by Freedman, He, and Wang in 1994, with their most important result being the proof of the energy's conformal invariance. While a variety of results have built those of Freedman, He, and Wang, two topics remain largely unexplored: the interaction of curvature and Mobius energy and the generalization of the Mobius energy to curves with a varying thickness. In this thesis, we investigate both of these subjects.
We show two fundamental results related to curvature and energy. First, we show that any simple, closed, twice-differentiable curve can be transformed in an energy-preserving and length-preserving way that allows us to make the pointwise curvature arbitrarily large at a point. Next, we prove that the total absolute curvature of a twice-differentiable curve is uniformly bounded with respect to conformal transformations. This is accomplished mainly via an analytic investigation of the effect of inversions on total absolute curvature.
In the second half of the thesis, we define a generalization of the Mobius energy for simple curves of varying thickness that we call the "nonuniform energy." We call such curves "weighted knots," and they are defined as the pairing of a curve parametrization and positive, continuous weight function on the same domain. We then calculate the first variation formulas for several different variations of the nonuniform energy. Variations preserving the curve shape and total weight are shown to have no minimizers. Variations that "slide" the weight along the curve are shown to preserve energy is special cases.
|
2 |
On two unsolved problems in probabilitySwan, Yvik 08 June 2007 (has links)
Dans ce travail nous abordons deux problèmes non résolus en Probabilité appliquée. Nous les approchons tous deux sous un angle nouveau, en utilisant des outils aussi variés que les chaînes de Markov, les mouvements Browniens, les transformations de Schwarz-Christoffel, les processus de Poisson et la théorie des temps d'arrêts optimaux.
Problème de la ruine pour N joueurs
Le problème de la ruine pour $N$ joueurs est un problème célèbre dont la solution pour $N=2$ est connue depuis longtemps. Nous l'abordons premièrement en toute généralité, en le modélisant comme un problème d'absorption pour une chaîne de Markov. Nous obtenons les distributions associées à ce problème et nous décrivons un algorithme (appelé {it folding algorithm}) permettant de diminuer considérablement le nombre d'opérations nécessaires à une résolution complète. Cette étude nous permet de mettre en avant un certain nombres de relations de récurrence satisfaites par les probabilités de ruines associées à chaque état de la chaîne de Markov. Nous étudions ensuite une version asymptotique du problème de la ruine pour 3 joueurs. Nous utilisons les propriétés d'invariance des mouvements Browniens par transformations conformes pour décrire une résolution de ce problème via les transformations de Schwarz-Christoffel. Cette méthode dépasse le cadre strict du problème de la ruine pour 3 joueurs et s'applique à d'autres problèmes de temps d'atteinte d'un bord par un mouvement Brownien.
Problème de Robbins
Ce problème s'inscrit dans le cadre de la théorie des temps d'arrêts optimaux. C'est un problème d'analyse séquentielle dans lequel un observateur examine $n$ variables aléatoires indépendantes de manière séquentielle et doit en sélectionner exactement une sans rappel. L'objectif est de déterminer une stratégie qui permette de minimiser le rang moyen de l'observation sélectionnée.
Nous décrivons un modèle alternatif de ce problème, dans lequel le décideur observe un nombre aléatoire d'arrivées distribuées suivant un processus de Poisson homogène sur un horizon fixe $t$. Nous prouvons l'existence d'une stratégie optimale pour chaque horizon, et nous montrons que la fonction de perte associée à cette stratégie est uniformément continue sur $R$. Nous décrivons une fonction de perte restreinte qui permet d'obtenir une estimation de la valeur asymptotique du problème, et nous obtenons la valeur asymptotique associée à des stratégies spécifiques. Nous obtenons ensuite une équation intégro-diffférentielle sur la fonction de perte associée à la stratégie optimale. Finalement nous étudions les valeurs asymptotiques du problème et nous les comparons à celles du problème en temps discret. Nous concluons cette thèse en décrivant des stratégies spécifiques qui permettent d'obtenir des estimations sur le comportement asymptotique de la fonction de perte.
|
3 |
Representações dos Números Complexos e Transformações de Möbius / Representations of Complex Numbers and Möbius TransformationsCalister, Fernando Marques [UNESP] 19 August 2016 (has links)
Submitted by FERNANDO MARQUES CALISTER null (fcalister@gmail.com) on 2016-10-02T01:33:35Z
No. of bitstreams: 1
Representações dos Números Complexos e Transformações de Mobius.pdf: 617587 bytes, checksum: e9bbc4361adf7d335874ab0c7f3fdc3f (MD5) / Approved for entry into archive by Ana Paula Grisoto (grisotoana@reitoria.unesp.br) on 2016-10-05T16:28:55Z (GMT) No. of bitstreams: 1
calister_fm_me_sjrp.pdf: 617587 bytes, checksum: e9bbc4361adf7d335874ab0c7f3fdc3f (MD5) / Made available in DSpace on 2016-10-05T16:28:55Z (GMT). No. of bitstreams: 1
calister_fm_me_sjrp.pdf: 617587 bytes, checksum: e9bbc4361adf7d335874ab0c7f3fdc3f (MD5)
Previous issue date: 2016-08-19 / O objetivo deste trabalho é ampliar os conhecimentos sobre números complexos já adquiridos no ensino médio. Diversas formas de representação e propriedades operatórias são abordadas. Para este fim, primeiramente, os números complexos são definidos a partir do conceito de matrizes quadradas de ordem 2, e portanto, serão definidos como pares ordenados de números reais. Na sequência, a partir da apresentação geométrica dos conceitos e operações, é estudado o plano complexo estendido, as Transformações de Möbius e a Projeção Estereográfica. / The objective of this paper is to extend the concepts of complex numbers already acquired in high school. Many forms of representation and operative properties are used. For that, first, the complex numbers are defined from the concept of square matrices of order 2, and will therefore be defined as ordered pairs of real numbers. Following, from the geometric presentation of concepts and operations, it is studied the extended complex plane, the Möbius Transformations and the Stereographic Projection.
|
4 |
Aspectos das transformações conformes na eletrodinâmica: invariância e leis de conservação / Aspects of the conformal transformations in the electrodynamics: invariance and conservation lawsSantos, Vaguiner Rodrigues dos 21 August 2013 (has links)
Neste trabalho, discutem-se aspectos das transformações conformes na eletrodinâmica clássica com ênfase na invariância e nas leis de conservação. Inicialmente, abordaram-se aspectos gerais das transformações conformes e fez-se um resumo histórico da evolução dessas transformações. Procurou-se fazer uma apresentação didática, revisando-se a formulação Lagrangiana e o Teorema de Noether para campos aplicado à eletrodinâmica. Estudaram-se as transformações conformes no espaço plano, onde se mostrou que para dimensões maiores ou iguais a três o número de transformações é finito. A partir das equações de Maxwell em coordenadas curvilíneas, chegou-se à condição para que essas equações mantivessem sua forma cartesiana. Com essa condição, mostrou-se que a eletrodinâmica clássica é invariante para o grupo de transformações conformes. Foram discutidas as leis de conservação associadas à invariância conforme da eletrodinâmica clássica a partir do teorema de Noether. Das simetrias por translações no espaço-tempo, obtiveram-se as leis de conservação do momento linear e da energia. Das simetrias associadas às rotações, obtiveram-se seis quantidades conservadas: três delas ligadas à conservação do momento angular e, com relação às três restantes, observou-se, a partir de analogias com a mecânica, que estavam associadas ao movimento do centro de energia do campo. Para a interpretação da grandeza conservada por simetria de escala, verificou-se, também a partir de uma analogia mecânica, que essa simetria somente é verificada para partículas não massivas ou para partículas massivas a altas energias. Finalmente, para as transformações conformes especiais, verificou-se que as leis de conservação resultantes são consequências das leis anteriores de conservação para o campo eletromagnético, e neste caso, essa simetria também somente se manifesta para partículas de massa nula ou para altas energias. / In this work, aspects of conformal transformations in classical electrodynamics are discussed with emphasis on the invariance and conservation laws. Initially, a general view of conformal transformations was shown and a summary of the historical evolution of those transformations was presented. The work was approached didactically, and Noethers theorem based on the electrodynamics Lagrangian formulation was revised. The conformal transformations were studied in plane spaces and it was shown that, for dimensions greater than or equal to three, the number of transformations is finite. Starting from Maxwells equations in curvilinear coordinates, a condition for maintaining those equations in Cartesian form was established. With that condition, it was shown that the classical electrodynamics laws are invariant for the group of conformal transformations. The conservation laws associated with the conformal invariance of classical electrodynamics were discussed, based on Noethers theorem. From the space-time translation symmetry, the laws of conservation of linear momentum and of energy were obtained. From rotational symmetry, six conserved quantities were obtained: three of them associated with angular momentum and the remaining three, observed, starting from analogies with mechanics, were associated with the movement of the center of energy of the field. For the interpretation of the quantity conserved by scale symmetry, it was verified, also from a mechanical analogy, that that symmetry is only valid for null mass particles or for high energies. Finally, for the special conformal transformations, it was verified that the resultant laws of conservation are consequences of the previous laws, and in that case, symmetry is also valid only for particles of null mass or for high energies.
|
5 |
Aspectos das transformações conformes na eletrodinâmica: invariância e leis de conservação / Aspects of the conformal transformations in the electrodynamics: invariance and conservation lawsVaguiner Rodrigues dos Santos 21 August 2013 (has links)
Neste trabalho, discutem-se aspectos das transformações conformes na eletrodinâmica clássica com ênfase na invariância e nas leis de conservação. Inicialmente, abordaram-se aspectos gerais das transformações conformes e fez-se um resumo histórico da evolução dessas transformações. Procurou-se fazer uma apresentação didática, revisando-se a formulação Lagrangiana e o Teorema de Noether para campos aplicado à eletrodinâmica. Estudaram-se as transformações conformes no espaço plano, onde se mostrou que para dimensões maiores ou iguais a três o número de transformações é finito. A partir das equações de Maxwell em coordenadas curvilíneas, chegou-se à condição para que essas equações mantivessem sua forma cartesiana. Com essa condição, mostrou-se que a eletrodinâmica clássica é invariante para o grupo de transformações conformes. Foram discutidas as leis de conservação associadas à invariância conforme da eletrodinâmica clássica a partir do teorema de Noether. Das simetrias por translações no espaço-tempo, obtiveram-se as leis de conservação do momento linear e da energia. Das simetrias associadas às rotações, obtiveram-se seis quantidades conservadas: três delas ligadas à conservação do momento angular e, com relação às três restantes, observou-se, a partir de analogias com a mecânica, que estavam associadas ao movimento do centro de energia do campo. Para a interpretação da grandeza conservada por simetria de escala, verificou-se, também a partir de uma analogia mecânica, que essa simetria somente é verificada para partículas não massivas ou para partículas massivas a altas energias. Finalmente, para as transformações conformes especiais, verificou-se que as leis de conservação resultantes são consequências das leis anteriores de conservação para o campo eletromagnético, e neste caso, essa simetria também somente se manifesta para partículas de massa nula ou para altas energias. / In this work, aspects of conformal transformations in classical electrodynamics are discussed with emphasis on the invariance and conservation laws. Initially, a general view of conformal transformations was shown and a summary of the historical evolution of those transformations was presented. The work was approached didactically, and Noethers theorem based on the electrodynamics Lagrangian formulation was revised. The conformal transformations were studied in plane spaces and it was shown that, for dimensions greater than or equal to three, the number of transformations is finite. Starting from Maxwells equations in curvilinear coordinates, a condition for maintaining those equations in Cartesian form was established. With that condition, it was shown that the classical electrodynamics laws are invariant for the group of conformal transformations. The conservation laws associated with the conformal invariance of classical electrodynamics were discussed, based on Noethers theorem. From the space-time translation symmetry, the laws of conservation of linear momentum and of energy were obtained. From rotational symmetry, six conserved quantities were obtained: three of them associated with angular momentum and the remaining three, observed, starting from analogies with mechanics, were associated with the movement of the center of energy of the field. For the interpretation of the quantity conserved by scale symmetry, it was verified, also from a mechanical analogy, that that symmetry is only valid for null mass particles or for high energies. Finally, for the special conformal transformations, it was verified that the resultant laws of conservation are consequences of the previous laws, and in that case, symmetry is also valid only for particles of null mass or for high energies.
|
6 |
Conformal Bootstrap : Old and NewKaviraj, Apratim January 2017 (has links) (PDF)
Conformal Field Theories (CFT) are Quantum Field Theories characterized by enhanced (conformal) symmetries. They are interesting to Theoretical Physicists because they occur at critical points in phase transitions of various systems and also in the world sheet formulation of String Theory. CFTs allow Operator Product Expansion (OPE) in their correlators. The idea of Conformal Bootstrap is to solely use the conformal symmetries and crossing symmetry in the OPE to solve a conformal led theory and not explicitly use a lagrangian. Solving a CFT is equivalent to obtaining the anomalous dimensions and OPE coe client’s of the operators. The work presented in this thesis shows how ideas of bootstrap can be used to get analytic results for dimensions and OPE coe client’s of various operators in CFTs.
In the conventional bootstrap program, the OPE in the direct (s-) channel is compared with the OPE of a crossed (t-) channel. This requirement of crossing symmetry is called the bootstrap equation. The flow of logic is somewhat reversed in the \new" idea that is formulated in this thesis. The trick is to expand a CFT correlator in terms of Witten diagrams, in all channels. This is a manifestly crossing symmetric description, and is in contrast to the usual expansion in terms of conformal blocks, which is in only one channel. For convenience we work with the Mellin transforms of Witten diagrams. For consistency of the Witten diagrams expansion with the conformal block expansion in a certain channel, we require the satisfaction of some equations, which we call the bootstrap equations in Mellin space. This scheme was rest chalked out by Polyakov in 1973, where he proposed the use of \unitary amplitudes" to expand a correlator. The unitary amplitudes had similar symmetry and analytic properties as the Witten diagrams. Even though he did not take his idea forward, replacing unitary amplitudes with Witten diagrams seems to work very well for obtaining analytic results.
The working of bootstrap equations in Mellin space is demonstrated for the 4 Wilson-Fisher fixed point in d = 4 , O(N) theory at Wilson-Fisher point (in d = 4 ), as well as with large N (in general d), and large spin operators in strongly coupled and weakly coupled theories. For the case of global symmetry we have also analysed the somewhat unexplored case of cubic anisotropy. The results are obtained as perturbative series in , 1=N, or 1=` as applicable, and they are consistent with known results in literature. We also obtain various new results, for instance the OPE coe client’s of general higher spin operators. These results are otherwise very di cult to end from Feynman diagrams, but in this approach they come out very simply, essentially by solving some algebraic equations. We also show the use of the conventional bootstrap strategy, for analytically obtaining anomalous dimensions of large spin operators having higher twists, in a O(N) theory, by working in the light cone limit.
One can question the validity of the proposal of using Witten diagrams to expand a correlator. One such issue is convergence of the sum over Witten diagrams. Convergence can be shown to hold for the operator spectrum we have worked with. Also there are operators that might upset convergence under some conditions. Resolutions of such cases, and ways to improve convergence have also been discussed.
The conventional bootstrap method has been very successful in giving numerical results in nonpertur-bative CFTs, like the 3 dimensional Ising model. Numerical analysis can also be made possible with the new bootstrap in Mellin space approach. Having a convergent basis of expansion improves the prospect of numeric. The goal is to formulate a bootstrap scheme that, under a single framework, can make most of all the CFT properties. It should be systematic, so that one can obtain anomalous dimensions and OPE coe client’s of all operators up to any desired order, and works for all strongly/weakly coupled and perturbative/nonpertur-bative CFTS, both analytically and numerically. Finally, the use of Witten diagrams also indicates the possibility of Ising CFT or weakly coupled CFTs having connections with AdS/CFT, and hence String Theory. It does seem we have a right direction towards achieving our goal.
|
7 |
On two unsolved problems in probabilitySwan, Yvik 08 June 2007 (has links)
<p>Dans ce travail nous abordons deux problèmes non résolus en Probabilité appliquée. Nous les approchons tous deux sous un angle nouveau, en utilisant des outils aussi variés que les chaînes de Markov, les mouvements Browniens, les transformations de Schwarz-Christoffel, les processus de Poisson et la théorie des temps d'arrêts optimaux. <p><p>Problème de la ruine pour N joueurs<p><p>Le problème de la ruine pour $N$ joueurs est un problème célèbre dont la solution pour $N=2$ est connue depuis longtemps. Nous l'abordons premièrement en toute généralité, en le modélisant comme un problème d'absorption pour une chaîne de Markov. Nous obtenons les distributions associées à ce problème et nous décrivons un algorithme (appelé {it folding algorithm}) permettant de diminuer considérablement le nombre d'opérations nécessaires à une résolution complète. Cette étude nous permet de mettre en avant un certain nombres de relations de récurrence satisfaites par les probabilités de ruines associées à chaque état de la chaîne de Markov. Nous étudions ensuite une version asymptotique du problème de la ruine pour 3 joueurs. Nous utilisons les propriétés d'invariance des mouvements Browniens par transformations conformes pour décrire une résolution de ce problème via les transformations de Schwarz-Christoffel. Cette méthode dépasse le cadre strict du problème de la ruine pour 3 joueurs et s'applique à d'autres problèmes de temps d'atteinte d'un bord par un mouvement Brownien. <p><p>Problème de Robbins<p><p>Ce problème s'inscrit dans le cadre de la théorie des temps d'arrêts optimaux. C'est un problème d'analyse séquentielle dans lequel un observateur examine $n$ variables aléatoires indépendantes de manière séquentielle et doit en sélectionner exactement une sans rappel. L'objectif est de déterminer une stratégie qui permette de minimiser le rang moyen de l'observation sélectionnée. <p><p> Nous décrivons un modèle alternatif de ce problème, dans lequel le décideur observe un nombre aléatoire d'arrivées distribuées suivant un processus de Poisson homogène sur un horizon fixe $t$. Nous prouvons l'existence d'une stratégie optimale pour chaque horizon, et nous montrons que la fonction de perte associée à cette stratégie est uniformément continue sur $R$. Nous décrivons une fonction de perte restreinte qui permet d'obtenir une estimation de la valeur asymptotique du problème, et nous obtenons la valeur asymptotique associée à des stratégies spécifiques. Nous obtenons ensuite une équation intégro-diffférentielle sur la fonction de perte associée à la stratégie optimale. Finalement nous étudions les valeurs asymptotiques du problème et nous les comparons à celles du problème en temps discret. Nous concluons cette thèse en décrivant des stratégies spécifiques qui permettent d'obtenir des estimations sur le comportement asymptotique de la fonction de perte. <p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.137 seconds