• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • Tagged with
  • 16
  • 11
  • 7
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Una contribución al desarrollo de los qM_3-retículos

Jiménez, María A. 12 December 2016 (has links)
En esta tesis investigamos la clase de los qM3 retículos y la de los mM3−retículos o M3−retículos monádicos, que son M3−retículos dotados de un cuantificador existencial, en el primer caso, y en el segundo de dos cuantificadores: existencial y universal. También estudiamos la clase de los M3−retículos k–cíclicos, que son M3−retículos dotados de un automorfismo de período k. Hemos organizado el trabajo en cinco capítulos, divididos a su vez en secciones y subsecciones en algunos casos. El Capítulo 1 está dividido en cuatro secciones. En las primeras, repasamos resultados principales sobre retículos distributivos y exponemos distintos conceptos de álgebra universal y espacios de Priestley. Todos los resultados indicados son conocidos. Los hemos incluído tanto para facilitar la lectura posterior, como para fijar las definiciones. En la última sección, introducimos los M3−retículos definidos por A. V. Figallo a sugerencia de A. Monterio en Los M3-Reticulados [14], Rev. Colombiana de Matemática, XXI, 1987. En la primera sección del Capítulo 2, indicamos una dualidad topológica para los M3−retículos. En la segunda sección, utilizando la dualidad, caracterizamos el retículo de las congruencias de estas álgebras y determinamos las álgebras simples y subdirectamente irreducibles, reencontrando los resultados que Figallo había establecido de manera algebraica, de una forma diferente, vía la topología. Luego nos dedicamos al estudio de las congruencias principales y booleanas, demostrando que ambas coinciden, están definidas ecuacionalmente (CPDE) y son congruencias regulares y uniformes. Además probamos que la variedad M3, es a congruencias conmutativas, que es una variedad filtral y discriminadora y tiene la propiedad de extensión de congruencias (PEC). El Capítulo 3, está dividido en cuatro secciones. La primera, está dedicada al estudio del sistema determinante de unM3−retículo finito, mostrando que el conjunto ordenado de sus elementos primos, determina la estructura del mismo. En la segunda y tercera sección, indicamos un método para construir los M3−automorfismos y los M3−epimorfismos, cuando se trata de M3−retículos finitos, y determinamos en cada caso el número de los mismos. En la cuarta sección, referida a los M3−retículos k–cíclicos, probamos que la variedad es semisimple y determinamos el cardinal del álgebra libre finitamente generada. Comprobamos con esos resultados que dicha variedad es finitamente generada y localmente finita. Concluimos la sección estableciendo el número de estructuras cíclicas, no isomorfas, que se pueden definir sobre un M3−retículo finito. En el Capítulo 4, en la primera sección definimos los qM3−retículos y estudiamos algunas propiedades válidas en esta clase. En particular, determinamos cómo a partir de una familia especial de subálgebras de un M3−retículo, podemos obtener un cuantificador existencial de modo que lo transforme en un qM3−retículo. En la segunda sección, extendemos la dualidad de Priestley realizada para los M3−retículos con último elemento, al caso de los qM3−retículos acotados. Empleando esta dualidad, en la tercera sección, probamos que la variedad es semisimple y obtenemos una caracterización funcional de los qM3−retículos simples. De igual modo nos abocamos al estudio de las congruencias principales y booleanas, indicando sus propiedades más destacadas. El Capítulo 5, está dedicado a los M3−retículos monádicos. En la primera sección, mostramos propiedades de los mismos y exhibimos la relación existente entre estas álgebras y los M3−retículos k–cíclicos. En la segunda y tercera sección, presentamos una dualidad topológica que nos facilita describir las congruencias, probar que la variedad es semisimple y obtener una caracterización funcional de los mM3−retículos simples. En la última sección, mostramos, con técnicas topológicas, que se puede interrelacionar ambos cuantificadores, a pesar que en estas lgebras no es posible hacerlo de la manera clásica, puesto que la negación de las mismas no se comporta como una negación de De Morgan; lo que nos permite afirmar que todo qM3−retículo es un M3−retículo monádico. / In this thesis, we study qM3−lattices and mM3−lattices or M3−monadic lattices that are M3−lattices provided with an existential quantifier in the first case, and, in the second case, they are provided with two quantifiers, existential and universal. We also study k–cyclic M3−lattices, which are M3−lattices provided with an automorphism of k period. We have organized this thesis into five chapters, divided into sections and subsections. Chapter 1 is divided into four sections. In the first sections, we review main results on distributive lattices and we expose different universal algebra and Priestley spaces concepts. All the indicated results are well-known. We have included these concepts not only to facilitate the reading of the following sections but also to establish definitions. In the last section, we introduce M3−lattices defined by A.V. Figallo, at suggestion of A. Monteiro in Los M3-Reticulados [14], Rev. Colombiana de Matem´atica, XXI, 1987. In the first section of Chapter 2, we indicate a topological duality for M3-lattices. In the second section, using this duality, we characterize the lattice of congruences of these algebras and we determine simple and subdirectly irreducible algebras, re-finding the results that Figallo had established in algebraic manner, in a different way, by means of topology. Then, we studied principal congruences and Boolean congruences, demonstrating that such congruences coincide, they are equationally defined (EDPC) and they are regular and uniform congruences. We further prove what the M3 variety is to commutative congruencies; that it is a filter and discriminating variety, and that it has the property of congruencies extension (CEP). Chapter 3 is divided into four sections. The first section is dedicated to the study of the determining the system of a finite M3−lattice, proving that the ordered set of its prime elements determines its structure. In the second and third section, we indicate a method to construct the M3−automorphisms and the M3−epimorphisms, when it is about of finite M3−lattices, and we also determine their number in both cases. The fourth section is dedicated to the study of the k–cyclic M3−lattices. First, we prove that the variety is semisimple and we determine the cardinal of finitely generated free algebra. Afterward, we prove with these results that the variety is finitely generated and locally finite. To conclude this section, we determine the number of cyclic structures, non-isomorphic, that can be defined on a finite M3−lattice. In Chapter 4, in the first section we define qM3−lattices and we study some valid properties of such lattices. In particular, we determine how, from a special family of subalgebras of an M3−lattice, we can obtain an existential quantifier in a way that transforms it into a qM3−lattice. In the second section, we extend the Priestley duality for M3-lattices with a last element, in the case of bounded qM3−lattices. By using this duality, in the third section, we prove that the variety is semisimple and we also obtained a functional characterization of the simple qM3−lattices. In the same way, we focus on the study of the principal and Boolean congruences, indicating their most outstanding properties. Chapter 5 is dedicated to the study of monadic M3−lattices. In the first section, we prove properties of the latter mentioned and we exhibit the relationship existing between these algebras and the k–cyclicM3−lattices. In the second and third section, we establish a topological duality that facilitates us to describe the congruences, to prove that the variety is semisimple and to obtain a functional characterization of the simple mM3−lattices. In the fourth section, we demonstrate that, with topological techniques, it is possible to interrelate both quantifiers, although it is not possible to do it in the classic manner in these algebras, since their negation does not behave as a De Morgan negation; which allows us to state that every qM3−lattice is a monadic M3−lattices.
12

Una contribución al desarrollo de las Tkm-álgebras

Gomes, Claudia Mónica 16 July 2021 (has links)
En 1955, las álgebras de Boole monádicas fueron introducidas por P. Halmos ([23]), como un modelo algebraico para el cálculo de predicados monádicos de la lógica clásica. Estas álgebras han sido ampliamente estudiadas por varios autores ([1], [24]) y en la actualidad se siguen realizando investigaciones en esta dirección ([4], [12], [37]). Por otra parte, Gr. C. Moisil introduce las álgebras de Boole cíclicas en [32], que han sido estudiadas también por A. Monteiro ([28], [29]), y A. V. Figallo ([15]). En esta tesis, investigamos la clase de las Tkm-álgebras, esto es, álgebras de Boole monádicas con un automorfismo monádico de período k, que generalizan a las álgebras de Boole monádicas simétricas ([1]) y están relacionadas de un modo especial, con la clase de las Df2-álgebras. Al trabajo lo hemos organizado en cuatro capítulos. El Capítulo 1 consta de cuatro secciones y casi todos los resultados indicados en ellas son conocidos. En la Sección 1, damos las definiciones básicas y hacemos un repaso de los resultados más importantes de álgebra universal. En las Secciones 2, 3 y 4, hacemos una breve exposición de definiciones y propiedades de las álgebras de Boole monádicas, Df2-álgebras, y Tk-álgebras, respectivamente. Todos estos temas los hemos incluido tanto para facilitar la lectura como para fijar los conceptos y propiedades que utilizaremos en los capítulos posteriores. En el Capítulo 2, comenzamos el estudio de las Tkm-álgebras. En la Sección 1, damos las definiciones básicas, determinamos las estructuras de Tkm-álgebras que se pueden definir sobre el álgebra de Boole con n átomos para n = 1, ..., 4. Destacamos tres subálgebras en una Tkm-álgebra B y mostramos algunas de sus propiedades, las que nos permiten luego caracterizar los miembros subdirectamente irreducibles y simples de esta variedad. En la Sección 2, determinamos la relación entre cuantificadores existenciales y subálgebras especiales del álgebra de Boole subyacente de una Tkm-álgebra, a partir de la cual obtenemos otra caracterización de estas álgebras. En la Sección 3, logramos una nueva descripción de las Tkm-álgebras finitas, por medio de ciertas particiones asociadas al conjunto de sus átomos. Luego, en la sección siguiente exploramos, en el caso finito, la relación entre la clase BTkm y la clase Df2 de las álgebras cilíndricas libres de elementos diagonales de dimensión dos. En las Secciones 5 y 6, estudiamos una clase especial de filtros, los Tkm-filtros, los cuales nos permiten caracterizar las Tkm-congruencias. Además, determinamos la relación entre esta clase de filtros y la de los Tk-filtros, los -filtros y los filtros que se pueden definir en una Tkm-álgebra B. A partir de estas relaciones caracterizamos, en el capítulo siguiente, las álgebras subdirectamente irreducibles y simples. Finalmente, en la Sección 7 realizamos un breve estudio de los Tkm-homomorfismos. La mayoría de los resultados obtenidos en este capítulo se publicaron en [16], mientras que otros se presentaron y discutieron previamente en la Reunión Anual de Comunicaciones Científicas de la Unión Matemática Argentina en 2007. En el Capítulo 3, con el propósito de obtener una mayor información sobre la variedad de las Tkm-álgebras, hacemos un estudio detallado de las congruencias e indicamos dos descripciones de las mismas, una por medio de los Tkm-filtros y la otra por una operación binaria definida sobre el álgebra. Esto nos permitió caracterizar las álgebras subdirectamente irreducibles y simples, y determinar algunas propiedades especiales de las Tkm-congruencias. Además, probamos que las Tkm-álgebras constituyen una variedad localmente finita, semisimple y residualmente finita. En las dos últimas secciones, aplicando los resultados de las secciones previas, obtenemos el término discriminador ternario para esta variedad y mostramos con ello que es discriminadora. Como consecuencia deducimos algunas propiedades de las Tkm-congruencias y, en particular, establecemos una descripción ecuacional de las congruencias principales. Cabe mencionar que algunos de los temas investigados en este capítulo se publicaron en [16]. El Capítulo 4 consta de cuatro secciones. En la primera, hemos incluido una breve exposición de la dualidad de P. Halmos para las álgebras de Boole monádicas. En la segunda sección, nos dedicamos a determinar una dualidad topológica para las Tkm-álgebras la que nos permitió, caracterizar al retículo de las congruencias. Finalmente, a partir de la dualidad topológica para la variedad BTkm, hemos establecido para una Tkm-álgebra B, una biyección entre las familias de las Tkm-subálgebras de B y de ciertas relaciones de equivalencia definidas en el conjunto de filtros primos de B. La mayor parte de los resultados obtenidos en las tres primeras secciones de este capítulo se presentaron previamente en el XIII Congreso Dr. Antonio Monteiro, Universidad Nacional del Sur. / In 1955, P. Halmos introduced monadic Boolean algebras as an algebraic counterpart of the one-variable fragment of the classical predicate logic ([23]). These algebras have been widely studied by various authors ([1], [24]) and there are still investigations in this direction ([4], [12], [37]). On the other hand, Gr. C. Moisil introduces cyclic Boolean algebras in [32], which have been studied by A. Monteiro ([28], [29]), and A. V. Figallo ([15]). In this thesis, we investigate the class of the Tkm-algebras, this is, monadic Boolean algebras endowed with a monadic automorphism of period k. These algebras constitute a generalization of monadic symmetric Boolean algebras ([1]) and, in a special way, they are related with the class of Df2-algebras. We have organized this volume in four chapters. Chapter 1 consists of four sections and almost all results reported in them are well-known. In Section 1, we give the basic definitions and we review the most important results of universal algebra. In Sections 2, 3 and 4, we do a brief exposition of definitions and properties of monadic Boolean algebras, Df2-algebras and Tk-algebras, respectively. We have included them either to facilitate the reading as to fix the concepts and properties that we will use in later chapters. In Chapter 2, we start the study of Tkm-algebras. In Section 1, we give basic definitions, we determine the structures of Tkm-algebras that can be defined on the Boole algebra with $n$ atoms for n=1,...,4. We distinguish three subalgebras in a Tkm-algebra B and we show some of its properties, which allow us later to characterize the subdirectly irreducible and simple members of this variety. In the second section, we determine the relationship between existential quantifiers and special subalgebras of the underlying Boolean algebra of a Tkm-algebra, from which we obtain another characterization of these algebras. In Section 3, we give a new description of finite Tkm-algebras by means of certain partitions of the set of their atoms. Then, in the next section, we explore, in the finite case, the relationship between the class BTkm and the class Df2 of diagonal-free two-dimensional cylindric algebras. In Sections 5 and 6, we study a special class of filters, the Tkm-filters, which allow us to characterize the Tkm-congruences. Also, we determine relationships between classes of Tkm-filters, Tk-filters, -filters and filters that can be defined in a Tkm-algebra B. From these relationships, we characterize, in the next chapter, sub-directly irreducible and simple algebras. Finally, in Section 7 we carry out a brief study of the Tkm-homomorphisms. Most of the results obtained in this chapter were published in [16], while others were previously presented and discussed in Annual Meeting of the Unión Matemática Argentina in 2007. In Chapter 3, in order to obtain further information on the variety of Tkm-algebras, we make a detailed study of the congruences and indicate two descriptions of them, one by means of the Tkm-filters and the other by a binary operation defined on the algebra. This allowed us to characterize subdirectly irreducible and simple algebras, and determine some special properties of the Tkm-congruences. Furthermore, we prove that Tkm-algebras constitute a semisimple, locally finite and residually finite variety. In Sections 6 and 7, by applying the results of the previous sections, we obtain the ternary discriminator term for this variety and we show with it that this variety is discriminator. As a consequence, we deduce some properties of the Tkm-congruences and, in particular, we establish an equational description of the principal congruences. It is worth mentioning that several of the topics investigated in this chapter were published in [16]. Chapter 4 consists of four sections. In the first one, we have included a brief exposition of P. Halmos' duality for monadic Boolean algebras. In the second section, we devote to determine a topology duality for the Tkm-álgebras which allowed us to characterize the lattice of congruences. Finally, bearing in mind the above duality for the variety BTkm, we have established for a Tkm-algebra B, a bijection between the families of the Tkm-subalgebras of B and of certain equivalence relations defined in the set of prime filters of B. Most of the results obtained in the first three sections of this chapter were previously presented at the XIII Congress Dr. Antonio Monteiro, Universidad Nacional del Sur.
13

Álgebras de Lukasiewicz-Moisil Θ-valuadas

Pascual, Inés Beatriz 24 February 2016 (has links)
En esta tesis investigamos la clase de las álgebras de Lukasiewicz–Moisil −valuadas, siendo el tipo de orden de un conjunto totalmente ordenado. Al trabajo lo hemos organizado en cinco capítulos. El Capítulo 1 consta de cuatro secciones y los resultados indicados en ellas son conocidos. Los hemos incluído tanto para facilitar la lectura posterior, como para fijar las definiciones de las álgebras y las dualidades topológicas que utilizamos en los capítulos siguientes. En el Capítulo 2 consta de dos secciones. En la primera sección, determinamos una dualidad topológica para las álgebras de Lukasiewicz–Moisil −valuadas sin negación (LM −álgebras), equivalente a la dada por A. Filipoiu en 1980 para arbitrario. Además, consideramos el caso particular de las LM −álgebras en las que es un entero n, n 2 (LMn−´algebras). En la segunda sección, extendemos a las ´algebras de Lukasiewicz–Moisil −valuadas con negaci´on (nLM −álgebras) la dualidad anteriormente obtenida para las LM −álgebras y la dualidad de las álgebras de De Morgan determinada por W. Cornish y P. Fowler en [22]. También analizamos el caso particular en el que es un entero n, n 2 (nLMn−álgebras). Es un hecho conocido que debido a que el álgebra cociente de una LM −algebra por una congruencia de la misma, en el sentido del ´algebra universal, no necesariamente satisface el principio de determinaci´on de Moisil, se introduce un concepto más fuerte de congruencia sobre estas álgebras, a las que se las llama −congruencias. En las dos secciones de este capítulo, no solamente caracterizamos el retículo de las congruencias y el de las −congruencias de estas álgebras, sino que también describimos las álgebras simples y subdirectamente irreducibles de cada una de esta clase de ´algebras con respecto a ambas congruencias y tambi´en afirmamos que las álgebras antes mencionados coinciden. Es más determinamos que el espacio asociado a cada una de estas álgebras es un conjunto totalmente ordenado. A partir de este resultado y usando técnicas topológicas obtenemos estas álgebras, arrivando así, por medio de un razonamiento diferente, a los resultados indicados por R. Cignoli en [15], en el caso de las nLMn−álgebras y los de V. Boicescu y otros en [13], en otro caso. A partir de la caracterizaci´on obtenida de las conguencias maximales probamos que las LM −álgebras y las nLM −álgebras son semisimples. Además establecemos, tanto para las LM −álgebras como para las nLM −álgebras, una correspondencia entre la familia de las −congruencias y la familia de ciertos filtros especiales de estas álgebras, a los que se les llama −filtros. Finalizamos este capítulo determinando, a través de las dualidades de estas álgebras, condiciones necesarias y suficientes para que las nociones de LMn−álgebra y nLMn−álgebra sean equivalentes. La mayoría de los resultados que se detallan en este capítulo se publicaron en A.V. Figallo, I. Pascual and A. Ziliani, A Duality for −Valued Lukasiewicz–Moisil Algebras and Applications. Journal of Multiple Valued Logic & Soft Computing. Vol. 16 (2010), pp. 303-322. Estos resultados se expusieron previamente en XIV Latin American Symposium on Mathematical Logic, Parati, Brasil en 2008. El Caíıtulo 3 est´s organizado en cuatro secciones y en él nos dedicamos a estudiar las congruencias y las −congruencias de las LM −álgebras y las nLM −álgebras, teniendo en cuenta las dualidades topológicas obtenidas en el Capítulo 2. En la primera sección, logramos una caracterización de las congruencias principales y otra de las −congruencias principales. Por medio de esta última caracterización probamos que la intersección de dos −congruencias principales de una LM −algebra es una −congruencia principal. Además, cuando es un entero n, n 2, obtenemos los filtros que determinan las congruencias principales sobre una LMn−algebra, y a partir de este resultado demostramos que la intersecci´on de dos congruencias principales de dicha álgebra es tambi´en una congruencia principal. En los otros casos damos condiciones suficientes para que la intersección de dos congruencias principales de una LM −álgebra no sea principal. En la segunda sección, centramos nuestra atenci´on en las congruencias y las −congruencias booleanas delas LM −álgebras. En primer lugar, las caracterizamos por medio de ciertos subconjuntos cerrados y abiertos de su espacio asociado. Usando estas caracterizaciones demostramos que estas congruencias coinciden, y también que son las congruencias principales determinadas por los filtros generados por elementos booleanos de estas álgebras. Este último resultado nos permite establecer condiciones necesarias y suficientes para que una congruencia principal sea booleana, y también determinar que las congruencias booleanas son conmutativas, regulares y uniformes. Además, analizamos el caso particular de las LM −algebras completas. La mayor parte de los resultados que se indican en las dos primeras secciones de este capítulo se publicaron en A.V. Figallo, I. Pascual and A. Ziliani, Principal and Boolean Congruences on −valued Lukasiewicz–Moisil algebras. Logic withouth frontiers. Festschrift for Walter Alexandre Carnielli on the occasion of his 60 th Birthday, 17 (2012), pp. 215-237. Algunos de estos resultados se expusieron previamente en XIII Latin American Symposium on Mathematical Logic, Oaxaca, Méjico, en 2006 y otros de estos resultados, en la Reunión Anual de la Unión Matemática Argentina en 2007. En la tercera sección de este capítulo, estudiamos las congruencias y las −congruencias principales y booleanas de las LM −álgebras que son producto de una familia finita de LM −álgebras totalmente ordenadas. Como consecuencia de ello obtenemos que las congruencias sobre estas álgebras son −congruencias y además que son principales y booleanas. A partir de este hecho probamos que el cardinal del álgebra booleana de las congruencias de un álgebra de esta subclase, está dado por el cardinal del álgebra booleana de los elementos complementados de dicha álgebra. Estos resultados se expusieron en la Reunión Anual de la Unión Matemática Argentina en 2006. En la última secci´on caracterizamos y analizamos las congruencias y −congruencias principales y booleanas de las nLM −álgebras. En todas las secciones consideramos en forma particular el caso en el que es un entero n, n 2. El Capítulo 4 está organizado en cuatro secciones. En la primera sección, comenzamos definiendo las álgebras de Lukasiewicz–Moisil −valuadas sin negación monádicas o mLM −álgebras y las álgebras de Lukasiewicz −valuadas sin negación monádicas fuertes o smLM −álgebras para arbitrario y consideramos el caso particular en el que es un entero n, n 2, a las que las denotamos por mLMn−álgebras y smLMn−álgebras, respectivamente. Luego, nos dedicamos a determinar una dualidad topológica para cada una de estas clases de álgebras, extendiendo las dualidades topol´ogicas para los M−retículos y sM−retículos, descriptas en el Capítulo 1 y la dualidad determinada en el Capítulo 2 para las LM −álgebras. A trav´es de estas dualidades obtenemos propiedades de las mLM −álgebras, de las que resulta que toda mLM −álgebra es una smLM −álgebra y consecuentemente que los conceptos de mLM −álgebra y smLM −´algebra son equivalentes. En la segunda sección, tambi´en por medio de la dualidad, caracterizamos las congruencias y las −congruencias y las congruencias y las −congruencias maximales y booleanas sobre una mLM −álgebra, y a partir de estas caracterizaciones realizamos un estudio detallado de las mismas. Luego, en la tercera sección, abordamos el problema de determinar las álgebras subdirectamente irreducibles de esta clase de álgebras con respecto a las congruencias y a las −congruencias. En primer lugar, las caracterizaciones anteriores nos permiten afirmar que estas álgebras coinciden y que son también las mLM −álgebras simples con respecto a ambas congruencias. Luego, por medio del espacio topológico cociente por la relaci´on de equivalencia definida en los espacios asociados a las mLM −álgebras, probamos que la imagen del cuantificador de una mLM −álgebra simple es una LM −álgebra simple. Finalmente, a partir de este último resultado y usando conceptos de topología general, determinamos todas las mLM −álgebras simples. Cabe mencionar que algunos de los temas que se presentan en este capítulo fueron aceptados en el XVI Latin American Symposium on Mathematical Logic, Buenos Aires en 2014. El Capítulo 5 consta de tres secciones. En la primera sección, desarrollamos una dualidad topológica para las álgebras de Lukasiewicz–Moisil −valuadas con negación monádicas o qnLM −álgebras, con infinito y finito. Estas álgebras fueron introducidas por G. Georgescu y C. Vraciu en [42], e investigadas por M. Abad en [1] cuando es un entero n, n 2 (qnLMn−álgebras). Cuando nos restringimos a la categoría de los Q−retículos distributivos y Q−homomorfismos, esta dualidad coincide con la obtenida por R. Cigx noli en [18]. En la segunda sección, por medio de la dualidad obtenida, logramos una nueva caracterización de las congruencias, las −congruencias y de las congruencias y −congruencias maximales y booleanas sobre estas álgebras. A partir de la caracterización de las congruencias maximales probamos que las qnLM −álgebras son semisimples. En la tercera sección, usando los resultados de la Sección 2, establecemos que las qnLM −álgebras simples y subdirectamente irreducibles con respecto a ambas congruencias coinciden. Además en esta sección, empleando el mismo método topológico que el que se utilizó para las mLM −álgebras, determinamos todas las qnLM −álgebras simples, las que se caracterizan por el hecho de que la imagen del cuantificador, definido en cada una de estas álgebras, es una nLM −álgebra simple; obteniendo así, de un modo diferente, los resultados establecidos por M. Abad en [1], para el caso en que es un entero n, n 2. La dualidad para las qnLMn−álgebras y sus aplicaciones se publicaron en Figallo, A. V.; Pascual, I.; Ziliani, A. Notes On Monadic n-valued Lukasiewicz Algebras. Math. Bohem. 129 (2004), no. 3, 255–271. Algunos de los resultados de la dualidad de las qnLM −álgebras, infinito, se presentaron y discutieron en la Reunión Anual de la Unión Matemática Argentina en 2005. Varios de los resultados de esta tesis que todavía no se han publicado, están en vías de publicación ([29], [32]). Finalizamos este trabajo dando una breve enumeración de los posibles desarrollos futuros. / In this thesis, we investigate the class of −valued Lukasiewicz–Moisil algebras, where is the order type of a totally ordered set. We have organized this volume in five chapters. Chapter 1 consists of four sections and the results reported in them are well-known. We have included them both to facilitate the subsequent reading and to set the definitions of algebras and topological dualities that we use in the remainder chapters. Chapter 2 is organized in two sections. In the first one, we determine a topological duality for −valued Lukasiewicz–Moisil algebras without negation (LM −algebras) equivalent to the one given by A. Filipoiu in [40]. Furthermore, we consider the particular case of LM −algebras where is an integer n, n 2 (LMn−algebras). In the second section, we extend the above duality and the one obtained by W. Cornish and P. Fowler in [22] for De Morgan algebras to the case of −valued Lukasiewicz–Moisil algebras with negation (nLM −algebras); and we also analyze the particular case in which is an integer n, n 2 (nLMn−algebras). It is well-known that there are congruences in the classes of LM −algebras and nLM −algebras, that the quotient algebra by these congruences, in the sense of universal algebra, does not satisfy the determination principle. That is the reason why the stronger concept of −congruence is introduced on these algebras. In these two sections of this chapter, we do not only characterize the lattice of congruences and the lattice of −congruences on these algebras, but we also describe the simple and subdirectly irreducible LM −algebras and nLM −algebras regarding both congruences; and we also assert that in each class of these algebras, the above mentioned algebras coincide. What is more, we determine that the space associated with each of these algebras is a totally ordered set. From this last result and using topological techniques, we obtain all these algebras; and so we arrive, through a different reasoning, at the results indicated by R. Cignoli in [15] in the case of nLMn−algebras and by V. Boicescu et al in [13], in another case. From the characterization of the maximal congruences, we can set that the LM −algebras and the nLM −algebras are semisimple. In addition to the latter mentioned, we establish for both LM −algebras and nLM −algebras, a correspondence between the family of −congruences and the family of certain special filters of these algebras, which are called −filters. Bearing in mind the above dualities for these algebras, we conclude this chapter by determining necessary and sufficient conditions so that the notions of LMn−algebra and nLMn−algebra are equivalent. Most of the results obtained in this chapter were published in A.V. Figallo, I. Pascual and A. Ziliani, A Duality for −Valued Lukasiewicz–Moisil Algebras and Applications. Journal of Multiple Valued Logic & Soft Computing. Vol. 16 (2010), pp. 303-322. They were previously presented and discussed in XIII Latin American Symposium on Mathematical Logic, Parati, Brasil in 2008. Chapter 3 is organized into four sections and in within this chapter our main interest is to research on the principal and Boolean congruences and −congruences on LM −algebras and nLM −algebras. In order to do this, we take into account the topological dualities for these algebras obtained in Chapter 2. In the first section, we achieve a characterization of principal congruences and another of principal −congruences on LM −algebras. These last results allow us to prove that the intersection of two principal −congruences on an LM −algebra is a principal −congruence. Furthermore, whenever is an integer n, n 2, we obtain the filters which determine principal congruences on an LMn−algebra and, we are also in a position to show that the intersection of two principal congruences on an LMn−algebra is a principal one. In other cases, we give sufficient conditions so that the intersection of two principal congruences on an LM −algebra is not a principal one. In Section 2, our attention is focused on Boolean congruences on LM −algebras. Firstly, we characterize them by means of certain closed and open subsets of their associated spaces. Using this characterization, we prove that these congruences are −congruences, and also that they are principal congruences associated with filters generated by the complemented elements of these algebras. This last result allows us to set necessary and sufficient conditions so that a principal congruence is a Boolean one, and also to determine that the Boolean congruences are commutative, regular and uniform. Besides, we analyze the particular case of the complete LM −algebras. Most of the achieved results in the two first sections of this chapter were published in A.V. Figallo, I. Pascual and A. Ziliani, Principal and Boolean Congruences on −valued Lukasiewicz–Moisil algebras. Logic withouth frontiers. Festschrift for Walter Alexandre Carnielli on the occasion of his 60 th Birthday, 17 (2012), pp. 215-237. Some of these results were also presented and discussed previously in XIII Latin American Symposium on Mathematical Logic, Oaxaca, Mexico, in 2006 and other of these results, in the Annual Meeting of the Uni´on Matem´atica Argentina in 2007. In Section 3 of this chapter, we study the principal and Boolean congruences on LM −algebras, which are a product of a finite family of totally ordered LM −algebras. As a result, we obtain that the congruences on these algebras are −congruences and that they also are principal and Boolean congruences and −congruences. From this fact, we prove that the cardinal of the lattice of congruences on an algebra of this subclass is given by the cardinal of the Boolean algebra of the complemented elements of this algebra. These results were presented and discussed in the Annual Meeting of the Uni´on Matem´atica Argentina in 2006. In the last section, we characterize and analyze the principal and Boolean congruences and −congruences on nLM −algebra. In all sections, we consider the particular case that is an integer n, n 2. Chapter 4 is organized in three sections. In the first section, we start by defining the monadic −valued Lukasiewicz–Moisil algebras without negation or mLM −algebras and the strong monadic −valued Lukasiewicz–Moisil algebras without negation or smLM − algebras, for arbitrary. Also we consider the particular case in which is an integer n, n 2, and we denote these algebras by mLMn−algebras and smLMn−algebras, respectively. Then, we dedicate ourselves to determine a topology duality for each of these classes of algebras. To do this, we extend to these algebras the topological dualities for M−lattices and sM−lattices, described in Chapter 1, and the duality that we determined in Chapter 2 for LM −algebras respectively. By means of these dualities, we obtain properties of the mLM −algebras, from which it arises the fact that every mLM −algebra is an smLM −algebra and consequently that the concepts of mLM −algebra and smLM −algebra are equivalent. In order to obtain more information about the latter mentioned algebras, in the second section, we characterize congruences and −congruences, maximal and Boolean congruences and −congruences on an mLM −algebra, taking into account the duality mentioined above; and from these characterizations, we carry out a detailed study of them. Then, in the third section, we deal with the problem of determining the subdirectly irreducible algebras of this class, concerning congruences and −congruences. Firstly, the previous characterizationes allow us to assert that these algebras coincide and that they are also the simple mLM −algebras regarding both congruences. Then, through the topological quotient space by the equivalence relation defined in the spaces associated with the mLM −algebras, we prove that the image of the quantifier of a simple mLM −algebra is a simple LM −algebra. Finally, from this last result and while using general topological concepts, we determine all the simple mLM −algebras. It is worth mentioning that some of the topics presented in this chapter were submitted and accepted at XVI Latin American Symposium on Mathematical Logic, Buenos Aires in 2014. Chapter 5 consists of three sections. In the first section, we develop a topological duality for monadic −valued Lukasiewicz–Moisil algebras with negation or qnLM −algebras, which were introduced by G. Georgescu and C. Vraciu in [42] and they were researched by M. Abad in [1] in the particular case that is an integer n, n 2 (qnLMn−algebra). When restricted to the category of Q−distributive lattices and Q−homomorphisms, this duality coincides with the one obtained by R. Cignoli in [18]. In the second section, a new characterization of the congruences and another one of the −congruences on a qnLM −algebra by means of certain closed and involutive subsets of the associated space are also obtained. Besides, in the second section, we characterize the maximal and Boolean congruences and −congruences on these algebras. The results obtained in this Section allow us, in the third section, to establish that simple and subdirectly irreducible qnLM −algebras regarding congruences and −congruences coincide. The characterization of the maximal congruences enables us to prove that every qnLM −algebra is semisimple. Furthermore, in the third section, employing the same topological method as the one used for mLM −algebras, we obtain all the subdirectly irreducible qnLM −algebras, which are characterized by the fact that the image of the quantifier, defined on each of these algebras, is a simple nLM −algebra. And so, we arrive at the results established by M. Abad in [1], in the case of qnLMn−algebra, n 2, by a different method. The duality for qnLMn−algebras and its applications were published in Figallo, A. V.; Pascual, I.; Ziliani, A. Notes On Monadic n-valued Lukasiewicz Algebras. Math. Bohem. 129 (2004), no. 3, 255–271. Some of the results of the duality for qnLM −algebras, infinite, were presented and discussed in the Annual Meeting of the Uni´on Matem´atica Argentina in 2005. Several of the results achieved in this thesis that have not been published yet will be submitted for publication ([29], [32]). We conclude this study by giving a brief enumeration of possible future developments.
14

Aplicaciones de la teoría de grafos al diseño de redes de interconexión de multiprocesadores

Fiol Mora, Miquel Àngel 01 January 1982 (has links)
En este trabajo se estudia, mediante la Teoría de Grafos, el diseño de redes de interconexión para sistemas distribuidos. Los principales temas tratados son: 1. Se propone una metodología general para la obtención de redes de interconexión; 2. Aplicando dicho método, se obtienen nuevas topologías, tanto para redes locales como para sistemas multimicroprocesadores;3. A partir del nuevo concepto de congruencia en Zn, se optimizan las llamadas estructuras en doble lazo para redes locales. Asimismo, se estudia la aplicación de este concepto a otros problemas planteados en las Ciencias de la Computación, tales como el diseño de esquemas lineales para el almacenamiento de datos en memorias paralelas; 4. Se presenta el método del desdoblamiento de nodos para la obtención de redes de interconexión para multiprocesadores, y se estudia su relación con la técnica del digrafo línea aplicado a la resolución del Problema(Δ;D); 5. Se resuelve el problema de la reducción de conexiones en sistemas multibús caracterizando las configuracions mínimas mediante el Teorema de las Bodas de Hall,y se estudian varios problemas relacionados con el tema. / This work deals with the applications of Graph Theory to the study and design of interconnection networks for distributed systems. The main subjects addressed are: 1. A general methodology for obtaining interconnection networks is proposed; 2. From such a method, new topologiesfor both local networks and multiprocessor systems are obtained; 3. From the new concept of congruence in Zn, the so-called double-loop networks for local networks are optimized. Moreover, such a concept is applied to study some other problems in Computer Science, such as the design of skewing schemes for the storage of data in parallel memories; 4. The method os doubling nodes is proposed to obtain interconnection networks for multiprocessor systems, and its relation with the line digraph technique is studied in order to solve the (Δ;D) Problem; The problem of the reduction of connections in multibus systems is solved by using the Hall Marriage Theorem, and several related problems are also considered.
15

Proposições geométricas com animações

Mendes, Ijosiel [UNESP] 25 August 2014 (has links) (PDF)
Made available in DSpace on 2015-04-09T12:28:28Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-08-25Bitstream added on 2015-04-09T12:47:21Z : No. of bitstreams: 1 000809266.pdf: 3298801 bytes, checksum: 6555a8aa3a24d7993a894d44e610138e (MD5) / O presente trabalho tem por objetivo apresentar animações no GeoGebra para introduzir proposições da geometria euclidiana plana, como modelo para professores de matemática, assim como apresentar uma proposta de como utilizá-las como ferramenta para elaboração, por parte dos professores, de situações de aprendizagens a serem aplicadas aos alunos na sala de informática. Tais situações têm um caráter investigativo, de forma que os próprios alunos conjecturem proposições geométricas após executarem comandos resultantes das “animações”. Tais proposições foram selecionadas de modo a viabilizar a resolução de um problema, a qual está relacionada com a determinação do centro de uma circunferência. Os primeiros resultados junto a professores de escolas estaduais mostram que a alternativa de animações no GeoGebra para o ensino da geometria é promissor / The present work aims at presenting animations in GeoGebra to introduce propositions of plane Euclidean geometry as a model for math teachers, as well as submit a proposal for how to use them as a tool for development on the part of teachers, the learning situations students to be applied in the computer room. Such situations have an investigative nature, so that the students themselves conjecture geometrical propositions after executing commands resulting from the animations. These propositions have been selected in order to facilitate the resolution of a problem, which is related to determining the center of a circle. The first results with the state school teachers show that the alternative of animations in GeoGebra for teaching geometry is promising
16

Proposições geométricas com animações /

Mendes, Ijosiel. January 2014 (has links)
Orientador: Rita de Cássia Pavani Lamas / Banca: José Antônio Salvador / Banca: Erminia de Lourdes Campello Fanti / Resumo: O presente trabalho tem por objetivo apresentar animações no GeoGebra para introduzir proposições da geometria euclidiana plana, como modelo para professores de matemática, assim como apresentar uma proposta de como utilizá-las como ferramenta para elaboração, por parte dos professores, de situações de aprendizagens a serem aplicadas aos alunos na sala de informática. Tais situações têm um caráter investigativo, de forma que os próprios alunos conjecturem proposições geométricas após executarem comandos resultantes das "animações". Tais proposições foram selecionadas de modo a viabilizar a resolução de um problema, a qual está relacionada com a determinação do centro de uma circunferência. Os primeiros resultados junto a professores de escolas estaduais mostram que a alternativa de animações no GeoGebra para o ensino da geometria é promissor / Abstract: The present work aims at presenting animations in GeoGebra to introduce propositions of plane Euclidean geometry as a model for math teachers, as well as submit a proposal for how to use them as a tool for development on the part of teachers, the learning situations students to be applied in the computer room. Such situations have an investigative nature, so that the students themselves conjecture geometrical propositions after executing commands resulting from the "animations". These propositions have been selected in order to facilitate the resolution of a problem, which is related to determining the center of a circle. The first results with the state school teachers show that the alternative of animations in GeoGebra for teaching geometry is promising / Mestre

Page generated in 0.0422 seconds