• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 7
  • 1
  • Tagged with
  • 65
  • 65
  • 65
  • 22
  • 21
  • 21
  • 18
  • 18
  • 17
  • 12
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Development of HVAC simulations for truck cabins using OpenFOAM

Haider, Junaid January 2023 (has links)
In regions with cold climates, a layer of ice often forms on vehicle windshields, whichobstructs the driver’s view. To address this issue, vehicles are equipped with internal defrosters. However, at Scania, the evaluation of defroster design performancecurrently relies on time-consuming and costly physical testing. A more effectiveapproach would be to employ numerical techniques to accurately forecast defrostingpatterns. This would offer valuable insights for analyzing the defroster’s performanceduring the design phase.The objective of this thesis is to develop a methodology using the open-source CFDsoftware OpenFOAM to predict the performance of a vehicle’s defrosting system.This approach presents a quicker and more convenient way to design the systemcompared to conventional testing methods. Experimental results were obtained bymonitoring the defrosting process at regular intervals. However, uncertainties existedregarding boundary and ambient conditions as the experiments were not conductedto validate the CFD results. The temperature profile and mass flow rate at the inlet were unknown. The model’s geometry was pre-processed using ANSA, and thevolume mesh for the truck cabin was generated using the SnappyHexMesh utilityin OpenFOAM. Mesh verification demonstrated good quality, and the realizable k-εturbulence model was utilized. The Grid Convergence Index (GCI) was employedto compare different mesh sizes, ultimately achieving a converged mesh. The RKEmodel was found to be computationally efficient and suitable for defrosting simulations, producing similar results to the k-ω SST turbulence model.A time step study was conducted to determine an efficient time-step. Additionally,a temperature study was performed to address the uncertainty surrounding the inlet temperature. Various design points were examined, involving different heat-uptimes and maximum temperatures. The results indicated that a heat-up time of 600seconds and a maximum temperature of 308 Kelvin yielded similar outcomes to theexperiments. To address uncertainty regarding the inlet mass flow rate, a study wasconducted by varying the mass flow rate. Comparing the results with the experimental data, a mass flow rate of 450 kg/hr provided the most comparable defrostingperformance. The study also investigated the impact of the exterior domain anddetermined that removing it would lead to inaccurate defrosting predictions due to alack of heat transfer. Furthermore, a comparison of OpenFOAM and StarCCM+ forsteady-state solutions demonstrated satisfactory results in terms of turbulent kineticenergy and wall shear stress at the windshield. Attempts to optimize defrosting performance included optimizing the shape of the defroster vents. The effect of rotatingthe vents relative to the windshield surface on defrosting was assessed, but it wasconcluded that the angle had minimal impact on performance or the methodology isnot sensitive enough to differentiate the minor differences.In conclusion, this thesis presents an efficient methodology utilizing OpenFOAM topredict defrosting performance, encompassing complete windshield defrosting timeand ice melting rate. It holds potential for future defroster design processes. Furtherstudies could focus on alternative meshing methods to reduce computational costs.
22

DEVELOPMENT OF HIGH-FIDELITY TEMPERATURE PROBE TO ASSESS HEAT TRANSFER ENHANCEMENT WITH ACOUSTIC STREAMING

Roberto Felix Nares Alcala (12266471) 21 July 2022 (has links)
<p>The present work relates to a new procedure, to perform temperature measurements with unprecedented accuracy. The new approach relies on a correction based on a two-wire probe thermocouple that enables a precise estimation of the conduction error. The difference between measured temperature by a thermocouple and total gas temperature for steady conditions can be decomposed into three main contributions: velocity error, conduction error and radiation error. Radiation error can be considered negligible for temperatures lower than 800K. The velocity error can be corrected using dedicated experimental calibrations to measure the recovery factor. However, the conduction error, remains an unresolved challenge in the aerospace and power-energy community. The proposed method includes a comprehensive correction with different options for the postprocessing. The method has been demonstrated using high-fidelity aero-structural computational simulations.</p>
23

Numerical Study of Conjugate Natural Convection from Discrete Heat Sources.

Gdhaidh, Farouq A.S., Hussain, Khalid, Qi, Hong Sheng 01 October 2014 (has links)
no / The coupling between natural convection and conduction within rectangular enclosure was investigated numerically. Three separate heat sources were flush mounted on a vertical wall and an isoflux condition was applied at the back of heat sources. The governing equations were solved using control volume formulation. A modified Rayleigh number and a substrate/fluid thermal conductivity ratio were used in the range 10^4 −10^7 and 10−10^3 respectively. The investigation was extended to examine high thermal conductivity ratio values. The results illustrated that, when Rayleigh number increased the dimensionless heat flux and local Nusselt number increased and the boundary layers along hot, cold and horizontal walls were reduced significantly. An opposite behaviour for the thermal spreading in the substrate and the dimensionless temperature, were decreased for higher Rayleigh number. Moreover, the thermal spreading in the substrate increased for higher substrate conductivity, which affected the temperature level. However the effect of the substrate is negligible when the thermal conductivity ratio higher than 1,500. / The full text of book chapters are not available for self deposit under the Publisher's copyright restrictions.
24

Total Temperature Probe Performance for Subsonic Flows using Mixed Fidelity Modeling

Vincent, Tyler Graham 08 April 2019 (has links)
An accurate measurement of total temperature in turbomachinery flows remains critical for component life models and cycle performance optimization. While many techniques exist to measure these flows, immersed thermocouple based probes remain highly desirable due to well established practices for probe design and implementation in typical industrial flow applications. However, as engine manufacturers continue to push towards higher maximum cycle temperatures and smaller flow passages, the continued use of these probes requires new probe designs considering both improved sensor durability and measurement accuracy. Increased maximum temperatures introduce many challenges for total temperature measurements using conventional immersed probes, including increased influences of conduction, convection, and radiation heat transfer between the sensor, fluid and the surroundings due to large thermal gradients present in real turbomachinery systems. While these effects have been previously investigated, the available design models are very limited to specific geometries and flow conditions. In this Dissertation, a more fundamental understanding of the flow behavior around typical vented shield style total temperature probes as a function of probe geometry and operating condition is gained using results from high-fidelity Computational Fluid Dynamics simulations with Conjugate Heat Transfer. A parametric study was conducted considering three non-dimensional probe geometric ratios (vent location to shield length (0.029-0.806), sensor diameter to shield inner diameter (0.252-0.672), and shield outer diameter to strut/mount thickness (0.245-0.759)) and three operating conditions (total temperature (70, 850, 2500°F) and pressure (1, 1, 10 atm), respectively) at a moderate Mach number of 0.4. Results were further quantified in the form of new empirical correlations necessary for rapid thermal performance evaluations of current and future probe designs. Additionally, a new mixed-fidelity or Reduced Order Modeling technique was developed which allows the coupling of high fidelity surface heat transfer data from CFD with a generalized form of the 1-D conducting solid equations for evaluating radiation and transient influences on sensor performance. These new flow and heat transfer correlations together with the new Reduced Order Modeling technique developed here greatly enhance the capabilities of designers to evaluate performance of current and future probe designs, with higher accuracy and with significant reductions in computational resources. / Doctor of Philosophy / An accurate measurement of total temperature in turbomachinery flows remains critical for component life models and cycle performance optimization. While many techniques exist to measure these flows, immersed thermocouple based probes remain highly desirable due to well established practices for probe design and implementation in typical industrial flow applications. However, as engine manufacturers continue to push towards higher maximum cycle temperatures and smaller flow passages, the continued use of these probes requires new probe designs considering both improved sensor durability and measurement accuracy. Increased maximum temperatures introduce many challenges for total temperature measurements using conventional immersed probes, including increased influences of conduction, convection, and radiation heat transfer between the sensor, fluid and the surroundings due to large thermal gradients present in real turbomachinery systems. While these effects have been thoroughly described and quantified in the past, the available design models are very limited to specific geometries and flow conditions. In this Dissertation, a more fundamental understanding of the flow behavior around typical vented shield style total temperature probes as a function of probe geometry and operating condition is gained using results from high-fidelity Computational Fluid Dynamics simulations with Conjugate Heat Transfer (CHT) capabilities. Results were further quantified in the form of new empirical correlations necessary for rapid thermal performance evaluations of current and future probe designs. Additionally, a new mixed-fidelity or Reduced Order Modeling (ROM) technique was developed which allows the coupling of high fidelity surface heat transfer data from CFD with a generalized form of the 1-D conducting solid equations for readily predicting the impact of radiation environment and transient errors on sensor performance.
25

Coupled CFD and FE Thermal Mechanical Simulation of Disc Brake

Tang, Jinghan, Bryant, David, Qi, Hong Sheng January 2014 (has links)
yes / To achieve a better solution of disc brake heat transfer problem under heavy duty applications, the accurate prediction of transient field of heat transfer coefficient is significant. Therefore, an appropriate coupling mechanism between flow field and temperature field is important to be considered. In this paper, a transient conjugate heat transfer co-simulation disc brake model has been presented in order to improve the accuracy and feasibility of conventional coupled FE and CFD method. To illustrate the possible utilizations of this co-simulation method, a parameter study has been performed e.g. geometric, material, and braking application. The results show the advantage of the co-simulation method in terms of computing time efficiency and accuracy for solving complex braking heat transfer problem.
26

Strongly-Coupled Conjugate Heat Transfer Investigation of Internal Cooling of Turbine Blades using the Immersed Boundary Method

Oh, Tae Kyung 02 July 2019 (has links)
The present thesis focuses on evaluating a conjugate heat transfer (CHT) simulation in a ribbed cooling passage with a fully developed flow assumption using LES with the immersed boundary method (IBM-LES-CHT). The IBM with the LES model (IBM-LES) and the IBM with CHT boundary condition (IBM-CHT) frameworks are validated prior to the main simulations by simulating purely convective heat transfer (iso-flux) in the ribbed duct, and a developing laminar boundary layer flow over a two-dimensional flat plate with heat conduction, respectively. For the main conjugate simulations, a ribbed duct geometry with a blockage ratio of 0.3 is simulated at a bulk Reynolds number of 10,000 with a conjugate boundary condition applied to the rib surface. The nominal Biot number is kept at 1, which is similar to the comparative experiment. As a means to overcome a large time scale disparity between the fluid and the solid regions, the use of a high artificial solid thermal diffusivity is compared to the physical diffusivity. It is shown that while the diffusivity impacts the instantaneous fluctuations in temperature, heat transfer and Nusselt numbers, it has an insignificantly small effect on the mean Nusselt number. The comparison between the IBM-LES-CHT and iso-flux simulations shows that the iso-flux case predicts higher local Nusselt numbers at the back face of the rib. Furthermore, the local Nusselt number augmentation ratio (EF) predicted by IBM-LES-CHT is compared to the body fitted grid (BFG) simulation, experiment and another LES conjugate simulation. Even though there is a mismatch between IBM-LES-CHT prediction and other studies at the front face of the rib, the area-averaged EF compares reasonably well in other regions between IBM-LES-CHT prediction and the comparative studies. / Master of Science / The present thesis focuses on the computational study of the conjugate heat transfer (CHT) investigation on the turbine internal ribbed cooling channel. Plenty of prior research on turbine internal cooling channel have been conducted by considering only the convective heat transfer at the wall, which assumes an iso-flux (constant heat flux) boundary condition at the surface. However, applying an iso-flux condition on the surface is far from the realistic heat transfer mechanism occurring in internal cooling systems. In this work, a conjugate heat transfer analysis of the cooling channel, which considers both the conduction within the solid wall and the convection at the ribbed inner wall surface, is conducted for more realistic heat transfer coefficient prediction at the inner ribbed wall. For the simulation, the computational mesh is generated by the immersed boundary method (IBM), which can ease the mesh generation by simply immersing the CAD geometry into the background volume grid. The IBM is combined with the conjugate boundary condition to simulate the internal ribbed cooling channel. The conjugate simulation is compared with the experimental data and another computational study for the validation. Even though there are some discrepancy between the IBM simulation and other comparative studies, overall results are in good agreement. From the thermal prediction comparison between the iso-flux case and the conjugate case v using the IBM, it is found that the heat transfer predicted by the conjugate case is different from the iso-flux case by more than 40 percent at the rib back face. The present study shows the potential of the IBM framework with the conjugate boundary condition for more complicated geometry, such as full turbine blade model with external and internal cooling system.
27

Analysis of Flow and Heat Transfer in the U.S. EPR Heavy Reflector

Takamuku, Kohei 31 January 2009 (has links)
The U.S. Evolutionary Power Reactor (EPR) is a new, large-scale pressurized water reactor made by AREVA NP Inc. Surrounding the core of this reactor is a steel wall structure sitting inside called the heavy reflector. The purpose of the heavy reflector is to reduce the neutron flux escaping the core and thus increase the efficiency of the reactor while reducing the damage to the structures surrounding the core as well. The heavy reflector is heated due to absorption of the gamma radiation, and this heat is removed by the water flowing through 832 cooling channels drilled through the heavy reflector. In this project, the temperature distribution in the heavy reflector was investigated to ascertain that the maximum temperature does not exceed the allowable temperature of 350 C, with the intent of modifying the flow distribution in the cooling channels to alleviate any hot spots. The analysis was conducted in two steps. First, the flow distribution in the cooling channels was calculated to test for any maldistribution. The temperature distribution in the heavy reflector was then calculated by simulating the conjugate heat transfer with this flow distribution as the coolant input. The turbulent nature of the flow through the cooling channels made the calculation of the flow distribution computationally expensive. In order to resolve this problem, a simplification method using the "equivalent flow resistance" was developed. The method was validated by conducting a few case studies. Using the simplified model, the flow distribution was calculated and was found to be fairly uniform. The conjugate heat transfer calculation was conducted. The same simplification method used in the flow distribution analysis could not be applied to this calculation; therefore, the computational cost of this model was reduced by lowering the grid density in the fluid region. The results showed that the maximum temperature in the heavy reflector is 347.7 C, which is below the maximum allowable temperature of 350 C. Additional studies were conducted to test the sensitivity of the maximum temperature with change in the flow distribution in the cooling channels. Through multiple calculations, the maximum temperature did not drop more than 3 C; therefore, it was concluded that the flow distribution in the cooling channels does not have significant effect on the maximum temperature in the heavy reflector. / Master of Science
28

Numerical Simulation of Temperature and Velocity Profiles in a Horizontal CVD-reactor

Randell, Per January 2014 (has links)
Silicon Carbide (SiC) has the potential to significantly improve electronics. As a material, it can conduct heat better, carry larger currents and can give faster responses compared to today’s technologies. One way to produce SiC for use in electronics is by growing a thin layer in a CVD-reactor (chemical vapour deposition). A CVD-reactor leads a carrier gas with small parts of active gas into a heated chamber (susceptor). The gas is then rapidly heated to high temperatures and chemical reactions occur. These new chemical substances can then deposit on the substrate surface and grow a SiC layer. This thesis investigates the effect of different opening angles on a susceptor inlet in a SiC horizontal hot-walled CVD-reactor at Linköping University. The susceptor inlet affects both the flow and heat transfer and therefore has an impact on the conditions over the substrate. A fast temperature rise in the gas as close to the substrate as possible is desired. Even temperaturegradients vertically over the substrate and laminar flow is desired. The CVD-reactor is modeled with conjugate heat transfer using CFD simulations for three different angles of the inlet. The results show that the opening angle mainly affects the temperature gradient over the substrate and that a wider opening angle will cause a greater gradient. The opening angle will have little effect on the temperature of the satellite and substrate.
29

Conjugate heat transfer effects on gas turbine film cooling : including thermal fields, thermal barrier coating, and contaminant deposition

Stewart, William Robb 07 October 2014 (has links)
The efficiency of natural gas turbines is directly linked to the turbine inlet temperature, or the combustor exit temperature. Further increasing the turbine inlet temperature damages the turbine components and limits their durability. Advances in turbine vane cooling schemes protect the turbine components. This thesis studies the conjugate effects of internal cooling, film cooling and thermal barrier coatings (TBC) on turbine vane metal temperatures. Two-dimensional thermal profiles were experimentally measured downstream of a single row of film cooling holes on both an adiabatic and a matched Biot number model turbine vane. The measurements were taken as a comparison to computational simulations of the same model and flow conditions. To improve computational models of the evolution of a film cooling jet as it propagates downstream, the thermal field above the vane, not just the footprint on the vane surface must be analyzed. This study expands these data to include 2-D thermal fields above the vane at 0, 5 and 10 hole diameters downstream of the film cooling holes. In each case the computational jets remained colder than the experimental jets because they did not disperse into the mainstream as quickly. Finally, in comparing results above adiabatic and matched Biot number models, these thermal field measurements allow for an accurate analysis of whether or not the adiabatic wall temperature was a reasonable estimate of the driving temperature for heat transfer. In some cases the adiabatic wall temperature did give a good indication of the driving temperature for heat transfer while in other cases it did not. Previous tests simulating the effects of TBC on an internally and film cooled model turbine vane showed that the insulating effects of TBC dominate over variations in film cooling geometry and blowing ratio. In this study overall and external effectiveness were measured using a matched Biot number model vane simulating a TBC of thickness 0.6d, where d is the film cooing hole diameter. This new model was a 35% reduction in thermal resistance from previous tests. Overall effectiveness measurements were taken for an internal cooling only configuration, as well as for three rows of showerhead holes with a single row of holes on the pressure side of the vane. This pressure side row of holes was tested both as round holes and as round holes embedded in a realistic trench with a depth of 0.6 hole diameters. Even in the case of this thinner TBC, the insulating effects dominate over film cooling. In addition, using measurements of the convective heat transfer coefficient above the vane surface, and the thermal conductivities of the vane wall and simulated TBC material, a prediction technique of the overall effectiveness with TBC was evaluated. / text
30

Topology Optimization of Conjugated Heat Transfer Devices : Experimental and Numerical investigation / Optimisation topologique de systèmes de transferts couplés de chaleur : approche expérimentale et développements numériques

Subramaniam, Vignaesh 07 December 2018 (has links)
Concevoir des dispositifs thermiques plus compacts, nécessitant moins de masse de matière, produisant moins de pertes de charge et présentant un rendement thermique accru représente un enjeu clé pour des performances améliorées à un coût moindre. La présente thèse étudie le potentiel et la validité de l’optimisation topologique en tant qu’outil CFD viable permettant de générer des designs thermiques optimaux par rapport aux approches conventionnelles telles que l’optimisation de forme et paramétrique. La première partie de la thèse présente une étude expérimentale de structures bi matériaux arborescentes optimales obtenues par optimisation topologique. Le problème mathématique d’optimisation topologique est formulé et implémenté dans OpenFOAM®. Il est appliqué au problème d’optimisation de la conduction thermique dans une configuration de type volume-vers-point. Des mesures thermiques expérimentales sont effectuées sur les structures optimisées, en utilisant la thermographie infrarouge afin de quantifier leurs performances de transfert de chaleur et ainsi validé les performances des structures optimales déterminées par le code d’optimisation topologique développé. La deuxième partie de la thèse présente une technique bi-objectif innovante d’optimisation topologique des systèmes de transferts de chaleur conjugués (CHT, Conjugate Heat Transfer) en régimes d’écoulement laminaires. Pour cela, le problème est développé mathématiquement et implémenté dans le solveur OpenFOAM® basé sur une méthode directe par volumes finis. La fonction objectif est formulée par la pondération linéaire de deux fonctions objectifs, l’une pour la réduction de la perte de charge et l’autre pour l’augmentation du transfert de chaleur. Ceci représente une cible très difficile du point de vue numérique en raison de la concurrence entre les deux objectifs (minimisation de la perte de charge et maximisation de la puissance thermique récupérable). Des designs non intuitifs, mais optimaux au sens de Pareto, ont été obtenus, analysés, discutés et justifiés à l’aide de diverses méthodes d’analyses numériques globale et locale. De plus, une configuration identique à une optimisation par une méthode Lattice Boltzmann issue de la bibliographie a été optimisée en utilisant le solveur OpenFOAM® développé. L’objectif, en complément de la comparaison des solutions optimales, est également d’initier un cas de référence pour les futures études dans ce domaine de recherche et d’innovation de façon à pouvoir pleinement comparer les solutions optimales obtenues par différences méthodes et différents solveurs. Enfin, les différents points expérimentaux et numériques mis en lumière et illustrés dans cette thèse démontrent l’importance de la méthodologie et potentiel très important de l’optimisation topologique pour la conception de systèmes thermiques industriels plus performants. / Designing thermal devices that are more compact with less mass, less frictional losses and increased thermal efficiency is a key requirement for enhanced performances at a lower cost. The present PhD thesis investigates the potential and validity of topology optimization numerical method as a viable CFD tool to generate optimal thermal designs as compared to conventional approaches like shape and parametric optimization. The first part of the thesis presents an experimental investigation of topology optimized tree-like structures made of two materials. The topolgy optimization mathematical problem is formulated and implemented in OpenFOAM®. It is applied to the topolgy optimization problem of volume-to-point heat removal. Experimental thermal measurements are carried out, on the optimal structures, using infrared thermography in order to quantify their heat transfer performances and thus validate the performances of the optimal structures determined by the developed topology optimization code. The second part of the thesis presents an innovative bi-objective optimization technique for topology optimization of Conjugate Heat Transfer (CHT) systems under laminar flow regimes. For that purpose, an inequality constrained bi-objective topology optimization problem is developed mathematically and implemented inside the Finite Volume based OpenFOAM® solver. The objective function is formulated by linear combination of two objective functions for pressure drop reduction and heat transfer enhancement which is numerically a very challenging task due to a competition between the two objectives (minimization of pressure drop and maximization of recoverable thermal power). Non-intuitive Pareto-optimal designs were obtained, analyzed, discussed and justified with the help of various global and local numerical analysis methods. Additionally, a recent Lattice Boltzmann topology optimization problem form the literature was solved using the developed OpenFOAM® solver. The objective, in addition to the comparison of the optimal solutions, is also to initiate a case of reference for future studies in this field of research and innovation so as to be able to fully compare the optimal solutions obtained by different and different methods. solvers. Finally, the various experimental and numerical findings highlighted and illustrated in this PhD thesis, demonstrate the importance of the methodology and immense potential behind topology optimization method for designing efficient industrial thermal systems.

Page generated in 0.1025 seconds