Spelling suggestions: "subject:"conjunto dde julia"" "subject:"conjunto dde iulia""
1 |
Dinâmica complexa e formalismo termodinâmico / Complex dynamics and thermodynamic formalismLima, Carlos Alberto Siqueira 01 April 2011 (has links)
Estudaremos sistemas dinâmicos complexos da esfera de Riemann, e empregaremos técnicas do Formalismo Termodinâmico incluindo a fórmula de Bowen para provar que a dimensão de Hausdorff \'dim IND. H\' J( \'f IND. lâmbda\' ) do conjunto de Julia J( \'f IND. lâmbda\' ) de uma família holomorfa de funções racionais hiperbólicas f \'lambda\' define uma função real analítica do parâmetro \'lambda\' . Este resultado foi provado por Ruelle [44] em 1981. Daremos uma prova alternativa usando movimentos holomorfos. Trata-se de uma técnica inovadora, originalmente desenvolvida por Mañé, Sad e Sullivan no trabalho [31] sobre estabilidade estrutural de sistemas dinâmicos complexos / We shall study complex dynamical systems in the Riemann sphere and prove that the Hausdorff dimension \'dim IND. H\' J( \'f IND. Lãmbda\' ) of the Julia set J( \'f IND. lâmbda\' ) of an holomorphic family of hyperbolic rational maps \'f IND. lâmbda\' defines a real analytic map of the parameter \'lâmbda\': This result was proved in 1981 by D. Ruelle (see [44]). We give an alternative proof using holomorphic motions (see [31]), which was originally developed to study the structural stability problem of complex dynamical systems. Throughout this work, we shall use several tools of Thermodynamic Formalism, including Bowens formula
|
2 |
Dinâmica de endomorfismos do plano complexo e conjuntos de Julia na esfera de RiemanMarchioli, Andresa Baldam [UNESP] 10 August 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:56Z (GMT). No. of bitstreams: 0
Previous issue date: 2009-08-10Bitstream added on 2014-06-13T18:07:02Z : No. of bitstreams: 1
marchioli_ab_me_sjrp.pdf: 317494 bytes, checksum: 518683b62d488d3433a0bee79ecd4f53 (MD5) / Neste trabalho, estudaremos as propriedades dinâmicas de endomorfismos do plano complexo C. Provaremos e o teorema de Montel e mostraremos algumas propriedades topológicas do conjunto de Julia J(f), onde f : C seta C é uma aplicação racional de grau > ou = 2 / In this work, we will study the dynamical properties of endomorfisms of complex plane C. We will also prove Montel's theorem and show some topological properties of Julia set J(f), where f : C 'seta' C is a rational map of degree > ou = 2.
|
3 |
Dinâmica complexa e formalismo termodinâmico / Complex dynamics and thermodynamic formalismCarlos Alberto Siqueira Lima 01 April 2011 (has links)
Estudaremos sistemas dinâmicos complexos da esfera de Riemann, e empregaremos técnicas do Formalismo Termodinâmico incluindo a fórmula de Bowen para provar que a dimensão de Hausdorff \'dim IND. H\' J( \'f IND. lâmbda\' ) do conjunto de Julia J( \'f IND. lâmbda\' ) de uma família holomorfa de funções racionais hiperbólicas f \'lambda\' define uma função real analítica do parâmetro \'lambda\' . Este resultado foi provado por Ruelle [44] em 1981. Daremos uma prova alternativa usando movimentos holomorfos. Trata-se de uma técnica inovadora, originalmente desenvolvida por Mañé, Sad e Sullivan no trabalho [31] sobre estabilidade estrutural de sistemas dinâmicos complexos / We shall study complex dynamical systems in the Riemann sphere and prove that the Hausdorff dimension \'dim IND. H\' J( \'f IND. Lãmbda\' ) of the Julia set J( \'f IND. lâmbda\' ) of an holomorphic family of hyperbolic rational maps \'f IND. lâmbda\' defines a real analytic map of the parameter \'lâmbda\': This result was proved in 1981 by D. Ruelle (see [44]). We give an alternative proof using holomorphic motions (see [31]), which was originally developed to study the structural stability problem of complex dynamical systems. Throughout this work, we shall use several tools of Thermodynamic Formalism, including Bowens formula
|
4 |
Dynamics of holomorphic correspondences / Dinâmica de correspondências holomorfasLima, Carlos Alberto Siqueira 22 June 2015 (has links)
We generalize the notions of structural stability and hyperbolicity for the family of (multivalued) complex maps Hc(z) = zr + c; where r > 1 is rational and zr = exp r log z: We discovered that Hc is structurally stable at every hyperbolic parameter satisfying the escaping condition. Surprisingly, there may be infinitely many attracting periodic points for Hc. The set of such points gives rise to the dual Julia set, which is a Cantor set coming from a Conformal Iterated Funcion System. Both the Julia set and its dual are projections of holomorphic motions of dynamical systems (single valued maps) defined on compact subsets of Banach spaces, denoted by Xc and Wc, respectively. For c close to zero: (1) we show that Jc is a union of quasiconformal arcs around the unit circle; (2) the set Xc is an holomorphic motion of the solenoid X0; (3) using the formalism of Gibbs states we exhibit an upper bound for the Hausdorff dimension of Jc; which implies that Jc has zero Lebesgue measure. / Generalizamos as noções de estabilidade estrutural e hiperbolicidade para a família de correspondências holomorfas Hc(z) = zr + c; onde r > 1 é racional e zr = exp r log z: Descobrimos que Hc é estruturalmente estável em todos os parâmetros hiperbólicos satisfazendo a condição de fuga. Tipicamente Hc possui infinitos pontos periódicos atratores, fato totalmente inesperado, uma vez que este número é sempre finito para aplicações racionais. O conjunto de tais pontos dá origem ao chamado conjunto de Julia dual, que é um conjunto de Cantor proveniente de um Conformal Iterated Function System. Tanto o conjunto de Julia e quanto seu dual são projeções de movimentos holomorfos de sistemas definidos em subconjuntos compactos denotados por Xc e Wc; respectivamente de um espaço de Banach. Para todo c próximo de zero: (1) mostramos que Jc é reunião de arcos quase-conformes próximos do círculo unitário; (2) o conjunto Xc é um movimento holomorfo do solenóide X0; (3) utilizando o formalismo dos estados de Gibbs, exibimos um limitante superior para a dimensão de Hausdorff de Jc. Consequentemente, Jc possui medida de Lebesgue nula.
|
5 |
Conjunto de Mandelbrot / Mandelbrot setReis, Márcio Vaiz dos 29 August 2016 (has links)
Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2016-10-03T21:11:40Z
No. of bitstreams: 2
Dissertação - Márcio Vaiz dos Reis - 2016.pdf: 2097960 bytes, checksum: 296b1790b8c8fe50c0e91d2d5ee204c4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-10-04T10:46:49Z (GMT) No. of bitstreams: 2
Dissertação - Márcio Vaiz dos Reis - 2016.pdf: 2097960 bytes, checksum: 296b1790b8c8fe50c0e91d2d5ee204c4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-10-04T10:46:49Z (GMT). No. of bitstreams: 2
Dissertação - Márcio Vaiz dos Reis - 2016.pdf: 2097960 bytes, checksum: 296b1790b8c8fe50c0e91d2d5ee204c4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-08-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The purpose of this dissertation is to present an introductory approach to the complex dynamics and fractal geometry, especially the Mandelbrot set. With the goal to simplify and stimulate the introduction of complex number in high school, the approach adopted was: the definition of the Mandelbrot set and its characteristics; the relationship between the Mandelbrot set and Julia set; how to find by using the Mandelbrot set. One of the tools used to help the teaching was Geogeobra, a dynamic software that allows the student to build the Mandelbrot set. Through this study, it is expected to motivate the learning of complex numbers by using fractal obtained by the study of function ( ) . Obtaining, as a result, a differentiated and motivating way of learning for a better understanding and intellectual development of the students. / Esse trabalho apresenta uma abordagem introdutória para a dinâmica complexa e a geometria fractal, em especial o conjunto de Mandelbrot. Com objetivo de facilitar e motivar a interação dos alunos com o ensino dos números complexos, a abordagem adotada foi: a definição do conjunto de Mandelbrot e suas características; a relação entre o conjunto de Mandelbrot e o conjunto de Julia; a relação do conjunto de Mandelbrot e o número . Uma das ferramentas utilizadas para auxiliar o professor foi o Geogeobra, um software dinâmico que permite o aluno a construção do conjunto de
Mandelbrot. Por meio deste trabalho, espera-se motivar o ensino dos números complexos através do fractal obtido pelo estudo da função ( ) . Obtendo assim, como resultado, uma forma diferenciada e motivadora do aprendizado do aluno, garantindo um melhor entendimento e desenvolvimento intelectual.
|
6 |
Dynamics of holomorphic correspondences / Dinâmica de correspondências holomorfasCarlos Alberto Siqueira Lima 22 June 2015 (has links)
We generalize the notions of structural stability and hyperbolicity for the family of (multivalued) complex maps Hc(z) = zr + c; where r > 1 is rational and zr = exp r log z: We discovered that Hc is structurally stable at every hyperbolic parameter satisfying the escaping condition. Surprisingly, there may be infinitely many attracting periodic points for Hc. The set of such points gives rise to the dual Julia set, which is a Cantor set coming from a Conformal Iterated Funcion System. Both the Julia set and its dual are projections of holomorphic motions of dynamical systems (single valued maps) defined on compact subsets of Banach spaces, denoted by Xc and Wc, respectively. For c close to zero: (1) we show that Jc is a union of quasiconformal arcs around the unit circle; (2) the set Xc is an holomorphic motion of the solenoid X0; (3) using the formalism of Gibbs states we exhibit an upper bound for the Hausdorff dimension of Jc; which implies that Jc has zero Lebesgue measure. / Generalizamos as noções de estabilidade estrutural e hiperbolicidade para a família de correspondências holomorfas Hc(z) = zr + c; onde r > 1 é racional e zr = exp r log z: Descobrimos que Hc é estruturalmente estável em todos os parâmetros hiperbólicos satisfazendo a condição de fuga. Tipicamente Hc possui infinitos pontos periódicos atratores, fato totalmente inesperado, uma vez que este número é sempre finito para aplicações racionais. O conjunto de tais pontos dá origem ao chamado conjunto de Julia dual, que é um conjunto de Cantor proveniente de um Conformal Iterated Function System. Tanto o conjunto de Julia e quanto seu dual são projeções de movimentos holomorfos de sistemas definidos em subconjuntos compactos denotados por Xc e Wc; respectivamente de um espaço de Banach. Para todo c próximo de zero: (1) mostramos que Jc é reunião de arcos quase-conformes próximos do círculo unitário; (2) o conjunto Xc é um movimento holomorfo do solenóide X0; (3) utilizando o formalismo dos estados de Gibbs, exibimos um limitante superior para a dimensão de Hausdorff de Jc. Consequentemente, Jc possui medida de Lebesgue nula.
|
Page generated in 0.0549 seconds