• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamical spectral sequences for Morse-Novikov and Morse-Bott complexes / Sequências espectrais dinâmicas para complexos de Morse-Novikov e Morse-Bott

Lima, Dahisy Valadão de Souza, 1986- 25 August 2018 (has links)
Orientador: Ketty Abaroa de Rezende / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-25T10:15:50Z (GMT). No. of bitstreams: 1 Lima_DahisyValadaodeSouza_D.pdf: 22146296 bytes, checksum: c88725de657b032422b9e4614ccd91a9 (MD5) Previous issue date: 2014 / Resumo: O tema principal desta tese é o estudo de fluxos gradientes associados a campos vetoriais $-\nabla f$ em variedades fechadas, onde $f$ é uma função do tipo Morse, Morse circular e Morse-Bott. Para obter informações dinâmicas em cada caso, utilizamos ferramentas algébricas e topológicas, tais como sequências espectrais e matrizes de conexão. No contexto de Morse, consideramos um complexo de cadeias $(C,\Delta)$ gerado pelos pontos críticos de $f$ onde $\Delta$ conta (com sinal) o número de linhas do fluxo entre dois pontos críticos consecutivos. Uma análise via sequências espectrais $(E^{r},d^{r})$ é feita para se obter resultados de continuação global em superfícies. Nós relacionamos as diferenciais da $r$-ésima página de $(E^{r},d^{r})$ com cancelamentos dinâmicos entre pontos críticos. No caso de função de Morse circular $f:M \rightarrow S^{1}$, o método da varredura para um complexo de Novikov $(\mathcal{N},\Delta)$ associado $f$ e gerado pelos pontos críticos de $f$ é definido sobre o anel $\mathbb{Z}((t))$. Este método produz a cada etapa matrizes de Novikov. Provamos que a matriz final produzida pelo método da varredura tem entradas polinomiais, o que é surpreendente, já que as matrizes intermediárias podem ter séries infinitas como entradas. Apresentamos resultados que mostram que os módulos e diferenciais de uma sequência espectral associada a $(\mathcal{N},\Delta)$ podem ser recuperados através do método da varredura. Para fluxos gradientes associados a funções de Morse-Bott, as singularidades formam variedades críticas. Usamos a teoria do índice de Conley para obter uma caracterização do conjunto de matrizes de conexão para fluxos Morse-Bott. Obtemos resultados sobre o efeito no conjunto de matrizes de conexão causado por mudanças na ordem parcial e na decomposição de Morse de um conjunto invariante isolado / Abstract: The main theme in this thesis is the study of gradient flows associated to a vector field $-\nabla f$ on closed manifolds, where $f$ is either a Morse function, a circle-valued Morse function or a Morse-Bott function. In order to obtain dynamical information, we make use of algebraic and topological tools such as spectral sequences and connection matrices. In the Morse context, consider a chain complex $(C,\Delta)$ generated by the critical points of $f$, where $\Delta$ counts the number of flow lines between consecutive critical points with signs. A spectral sequence $(E^{r},d^{r})$ analysis is used to obtain results on global continuation of flows on surfaces. A link is established between the differentials on the $r$-th page of $(E^{r},d^{r})$ and cancellation of critical points. In the circle-valued Morse case $f:M \rightarrow S^{1}$, a sweeping algorithm for the Novikov chain complex $(\mathcal{N},\Delta)$ associated to $f$ and generated by the critical points of $f$ is defined over the ring $\mathbb{Z}((t))$. This algorithm produces at each stage Novikov matrices. We prove that the last Novikov matrix has polynomial entries which is quite surprising since the matrices in the intermediary stages may have infinite series entries. We also present results showing that the modules and differentials of the spectral sequence associated to $(\mathcal{N},\Delta)$ can be retrieved through the sweeping algorithm. For gradient flows associated to Morse-Bott functions, the singularities form critical manifolds. We use the Conley index theory for the critical manifolds in order to characterize the set of connection matrices for Morse-Bott flows. Results are obtained on the effects on the set of connection matrices caused by a change in the partial ordering and Morse decomposition of isolated invariant sets / Doutorado / Matematica / Doutora em Matemática
2

Transition matrix theory = Teoria da matriz de transição / Teoria da matriz de transição

Vieira, Ewerton Rocha, 1987- 03 May 2015 (has links)
Orientador: Ketty Abaroa de Rezende / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T22:09:01Z (GMT). No. of bitstreams: 1 Vieira_EwertonRocha_D.pdf: 1632095 bytes, checksum: 5dc3208efc5649260ca62805c3e8e1b6 (MD5) Previous issue date: 2015 / Resumo: Nessa tese, apresentamos uma unificação da teoria das matrizes de transição algébrica, singular, topológica e direcional ao introduzir a matriz de transição (generalizada), a qual engloba todas as quatros citadas anteriormente. Alguns resultados de existência são apresentados bem como a verificação de que cada matriz de transição supracitada são casos particulares da matriz de transição (generalizada). Além disso, nós abordamos como as aplicações das quatros matrizes de transiçao, na teoria do índice de Conley, se traduzem para a matriz de transição (generalizada). Quando a matriz de transição (generalizada) satisfizer o requerimento adicional de cobrir o isomorfismo do índice de Conley F definido pelo fluxo, pode-se provar propriedades de existência e de conexão de órbitas. Essa matriz de transição com a propriedade de cobrir o isomorfismo F é definida como matriz de transição topológica generalizada e a utilizamos para obter conexões de órbitas num fluxo Morse-Smale sem órbitas periódicas bem como para obter conexões de órbitas numa continuação associada à sequência espectral dinâmica / Abstract: In this thesis, we present a unification of the theory of algebraic, singular, topological and directional transition matrices by introducing the (generalized) transition matrix which encompasses each of the previous four. Some transition matrix existence results are presented as well as the verification that each of the previous transition matrices are cases of the (generalized) transition matrix. Furthermore, we address how applications of the previous transition matrices to the Conley Index theory carry over to the (generalized) transition matrix. When this more general transition matrix satisfies the additional requirement that it covers flow-defined Conley-index isomorphisms, one proves algebraic and connection-existence properties. These general transition matrices with this covering property are referred to as generalized topological transition matrices and are used to consider connecting orbits of Morse-Smale flows without periodic orbits, as well as those in a continuation associated to a dynamical spectral sequence / Doutorado / Matematica / Doutor em Matemática

Page generated in 0.0592 seconds