• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 1
  • 1
  • Tagged with
  • 37
  • 37
  • 37
  • 27
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Studies of <em>Leishmania major</em> Pteridine Reductase 1, a Novel Short Chain Dehydrogenase

Luba, James 01 September 1997 (has links)
Pteridine reductase 1 (PTR1) is an NADPH dependent reductase that catalyzes the reduction of several pterins and folates. The gene encoding this enzyme was originally identified in Leishmania based on its ability to provide resistance to the drug methotrexate (MTX). The DNA and amino acid sequences are known, and overproducing strains of Escherichia coli are available. PTR1 has been previously shown to be required for the salvage of oxidized pteridines (folate, biopterin, and others). Since Leishmaniaare folate and pterin auxotrophes, PTR1 is a possible target for novel anti-folate drugs for the treatment of leishmaniasis. PTR1 catalyzes the transfer of hydride from NADPH to the 2-amino-4-oxo-pteridine ring system yielding 7, 8-dihydropteridines, and to the pteridine ring system of 7, 8-dihydropteridines yielding 5,6, 7, 8-tetrahydropteridines. PTR1 shows a pH dependent substrate specificity. At pH 4.6 the specific activity of PTR1 is highest with pterins, while at pH 6.0 the specific activity of PTR1 was highest with folates. The sequence of PTR1 is only 20-30% homologous to the sequences of members of the short chain dehydrogenase/reductase enzyme family. Although this is typical for members of this enzyme family, it does not allow for unambiguous classification in this family. In fact, when the DNA sequence of PTR1was first determined, PTR1 was classified as an aldoketo reductase. To classify PTR1 definitively, further biochemical characterization was required. To provide this information, the work described here was undertaken: (i) the stereochemical and kinetic course of PTR1 was determined; (ii) residues important in catalysis and ligand binding were identified; and (iii) conditions for the crystallization of PTR1 were developed. The stereochemistry of hydride transfer The use of [3H]-folate, showed that the ultimate product of PTR1 was 5, 6, 7, 8-tetrahydrofolate. 4R-[3H]-NADPH and 4S-[3H]-NADPH were synthesized enzymatically and used as the cofactor for the reduction of folate. PTR1 was coupled to thymidylate synthase (TS), and tritium from 4S-[3H]-NADPH was transferred to thymidylate. Therefore, the pro-S hydride of NADPH was transferred to the si face of dihydrofolate (DHF; see figure I-1). The transfer of the pro-Shydride indicates that PTR1 is a B-side dehydrogenase which is consistent with its membership in the short chain dehydrogenase (SDR) family. The kinetic mechanism of PTR1 When NADPH was varied at several fixed concentrations of folate (and vice-versa) V/K (Vmax/KM) showed a dependence upon concentration of the fixed substrate. This is consistent with a ternary complex mechanism, in contrast to a substituted enzyme mechanism that exhibits no dependence of V/K on fixed substrate. Product inhibition patterns using NADP+ and 5-deazatetrahydrofolate (5dTHF, a stable product analog) were consistent with an ordered ternary complex mechanism in which NADPH binds first and NADP+ dissociates last. However, an enzyme-DHF binary complex was detected by fluorescence. Isotope partitioning experiments showed that the enzyme-DHF binary complex was not catalytically competent whereas the enzyme-NADPH complex was. Measurement of the tritium isotope effect on V/K (T(V/K)) at high and low dihydrofolate confirmed that PTR1 proceeds via a steady state ordered mechanism. Rapid quench analysis showed that dihydrofolate was a transient intermediate during the reduction of folate to tetrahydrofolate and that folate reduction is biphasic. Catalytic Residues of PTR1 The amino acid sequences of dihydropteridine reductase and 3-α, 20-β, hydroxy steroid dehydrogenase were aligned to that of PTR1. Based on the results of the alignment, site directed mutagenesis was used to investigate the role of specific residues in the catalytic cycle of PTR1. Variant enzymes were screened based on their ability to rescue a dihydrofolate reductase (DHFR) deficient strain of E. coli. Selected PTR1 variants (some complementing and some non-complementing) were purified and further characterized. Tyrosine 193 of the wild type enzyme was found to be involved in the reduction of pteridines, but not in the reduction of 7, 8-dihydropteridines, and eliminated the substrate inhibition of 7, 8-dihydropteridines observed with the wild type enzyme. Both PTR1(K197Q) and PTR1(Y193F/K197Q) had decreased activity for all substrates and low affinity for NADPH. In contrast to the wild type enzyme, NADPH displayed substrate inhibition towards PTR1(K197Q). All PTR1(D180) variants that were purified were inactive except for PTR1(D180C), which showed 2.5% of wild type activity with DHF. The binary complexes of PTR1(D180A) and PTR1(D180S) with NADPH showed a decrease in affinity for folate. Based on the kinetic properties of the PTR1 variants, roles for Y193, K197, and D180 are proposed. In conjunction with D180, Y193 acts as a proton donor to N8 of folate. K197 forms hydrogen bonds with NADPH in the active site and lowers the pKaof Y193. D180 participates in the protonation of N8 of folate and N5 of DHF. Crystallization of PTR1 and PTR1-ligand complexes The crystallization of PTR1 from L. major and L. tarentolea as unliganded and as binary and ternary complexes was attempted. Several crystal forms were obtained including L. major PTR1-NADPH-MTX crystals that diffracted to ~ 3.2 Å resolution. It was not possible to collect a full data set of any of the crystals. At their current stage, none of the crystal forms is suitable for structural work.
12

Understanding regulatory factors in the skin during vitiligo

Essien, Kingsley I. 08 December 2018 (has links)
Vitiligo is an autoimmune disease of the skin characterized by epidermal depigmentation that results from CD8+ T cell-mediated destruction of pigment producing melanocytes. Vitiligo affects up to 1% of the population and current treatments are moderately effective at facilitating repigmentation by suppressing cutaneous autoimmune inflammation to promote melanocyte regeneration. In order to cause disease, CD8+ T cells must overwhelm the mechanisms of peripheral tolerance in the skin and if we understand the suppressive mechanisms that are compromised during vitiligo, we can potentially use this information to improve existing treatments or engineer novel interventions. Therefore, my goal is to characterize the regulatory factors in the skin that suppress depigmentation during vitiligo. Our lab has developed a mouse model of vitiligo that accurately reflects human disease and I used this model to demonstrate that regulatory T cells suppress CD8+ T cell-mediated depigmentation and interact with CD8+ T cells in the skin during vitiligo. In this model of disease, I investigated the molecules involved in regulatory T cell function and observed that the chemokine receptors CCR5 and CCR6 play different roles in regulatory T cell suppression. While CCR6 facilitates regulatory T cell migration to the skin, CCR5 is dispensable for migration but required for optimal regulatory T cell function. Additionally, I used our mouse model to demonstrate that Langerhans cells suppress the incidence of disease during vitiligo. Taken together the results from these studies provide novel insights into the mechanisms of suppression during vitiligo.
13

Efeitos da exposição à poluição atmosférica nas internações por doenças do sistema osteomuscular e do tecido conjuntivo em crianças e adultos residentes na cidade de São Paulo

Queiroz, Thairis Alves de 08 August 2018 (has links)
Submitted by Rosina Valeria Lanzellotti Mattiussi Teixeira (rosina.teixeira@unisantos.br) on 2018-09-24T18:07:05Z No. of bitstreams: 1 Thairis Alves de Queiroz.pdf: 1672979 bytes, checksum: 3d395d90a185b8380d687991081b3e73 (MD5) / Made available in DSpace on 2018-09-24T18:07:05Z (GMT). No. of bitstreams: 1 Thairis Alves de Queiroz.pdf: 1672979 bytes, checksum: 3d395d90a185b8380d687991081b3e73 (MD5) Previous issue date: 2018-08-08 / Submitted by Rosina Valeria Lanzellotti Mattiussi Teixeira (rosina.teixeira@unisantos.br) on 2018-09-24T18:07:09Z No. of bitstreams: 1 Thairis Alves de Queiroz.pdf: 1672979 bytes, checksum: 3d395d90a185b8380d687991081b3e73 (MD5) / Made available in DSpace on 2018-09-24T18:07:09Z (GMT). No. of bitstreams: 1 Thairis Alves de Queiroz.pdf: 1672979 bytes, checksum: 3d395d90a185b8380d687991081b3e73 (MD5) Previous issue date: 2018-08-08 / As afecções osteomusculares (CID:10 de M00 a M25 e M40 a M99) representam uns dos principais agravos à saúde no Brasil sendo de extrema preocupação, tanto do ponto de vista epidemiológico quanto em custos a saúde pública. E as doenças sistêmicas do tecido conjuntivo que também compõe o Capitulo XIII (CID:10 de M30 a M36) embora consideradas raras, são doenças com características complexas e multifatorial. Além de fatores de risco conhecidos para estas doenças, os poluentes do ar podem desencadear uma resposta de estresse oxidativo, levando a inflamação sistêmica. O presente estudo objetivou avaliar a correlação entre a exposição aos poluentes atmosféricos monitorados e o possível efeito sobre as internações por DSOTC (Doenças do Sistema Osteomuscular e do Tecido Conjuntivo), em crianças e adultos internados em hospitais do SUS no estado de São Paulo, no período de 2011 a 2016. Trata-se de um estudo do tipo ecológico de séries temporais, utilizando o modelo de regressão de Poisson e uma estrutura de defasagem de distribuição polinomial de até 14 dias após a exposição aos poluentes. Durante o período estudado foi constatado um total de 54.982 casos de internação por DSOTC na cidade de São Paulo, sendo as faixas etárias de 20 a 59 anos e 60 anos ou mais predominantes e mais vulneráveis aos efeitos a exposição aos poluentes. Os poluentes apresentam-se dentro dos limites impostos pelo Decreto Estadual nº 59.113 de 23/04/2013, exceto o ozônio (O3) que ultrapassou 296 vezes o limite imposto que é de 140 µg/m3. E quando comparados aos padrões impostos pela OMS, 3 dos 5 poluentes analisados ultrapassaram os limites diários estabelecidos, que são o O3, PM10 e NO2. O PM10 ultrapassou 288 vezes o nível diário permitido durante o período analisado. Com efeitos agudos e tardios para o número total de internações por DSOTC e para as faixas estarias de 20 a 59 e de 60 anos ou mais, com um aumento médio de 1,31% (IC 95%: 0,52- 2,09) no 13º dia sobre o número de internações por DSOTC. Ressaltando que dos 5 poluentes analisados 4 apresentaram efeito significativo sobre as internações por DSOTC no número total e em, pelo menos, uma das faixas etárias estipuladas, e que os padrões estabelecidos atualmente no estado de São Paulo não podem ser considerados seguros em relação a saúde humana, reforçando a necessidade de novos parâmetros que minimizam os efeitos adversos dos poluentes ar. / Musculoskeletal diseases (ICD 10th Revision from M00 to M25 and M40 to M99) are epidemiological relevant and economically impact the Brazilian Public Health System (SUS). The systemic diseases of connective tissue (ICD 10 th Revision from M30 to M36), although considered rare, are diseases with complex, multifactorial traits with serious commitments. Beyond well-known risk factors for these diseases, air pollutants can trigger an oxidative stress response leading to systemic inflammation. The present study aimed to evaluate the correlation between exposure to air pollutants and the possible worsening of DMSCT (Diseases of the Musculoskeletal System and Connective Tissue) in children and adults admitted to hospitals of the SUS in the State of São Paulo, from 2011 to 2016. In this ecological time series study, the effects of air pollutants on the outcomes were assessed using generalized linear Poisson regression model with a third-degree polynomial distributed lag model, controlling for weather variables, seasonality and days of the week. During the studied period was contacted a total of 54,982 cases of hospitalization for DSOTC in the city of São Paulo, being the age groups of 20 to 59 years and 60 years or more prevalent and more vulnerable to the effects exposure to pollutants. The pollutants are within the limits imposed by State Decree No. 59,113 of 23/04/2013, except the ozone (O3) that exceeded the limit imposed to 296 times is 140 µ g/m3. And when compared to the standards imposed by the who, 3 of the 5 pollutants examined exceeded daily limits laid down, which are the O3, PM10 and NO2. The PM10 exceeded 288 times the daily permitted level during the period under examination. With acute and late effects to the total number of hospitalizations for DSOTC and for the tracks would be of 20 to 59 and 60 years or more, with an average increase of 1.31% (95% CI: 0.52-2.09) on the 13th day on the number of hospitalizations by DSOTC. Noting that the pollutant analyzed 5 4 showed significant effect on hospitalizations for DSOTC in total number and in at least one of the stipulated age groups, and that the standards set in the State of São Paulo cannot be considered safe in relation to human health, reinforcing the need for new parameters that minimize the adverse effects of air pollutants.
14

Functional Analysis of MicroRNA-10b in Breast Carcinoma: A Dissertation

Moriarty, Charlotte M. Harwood 08 May 2009 (has links)
MicroRNAs (miRNAs) represent a class of small noncoding RNAs that regulate gene expression. Recent studies have shown that miRNAs are mis-expressed in various human cancers and that some miRNAs have the potential to act as tumor suppressors or oncogenes. MiR-10b is one miRNA that has been shown to be deregulated in breast cancer. However, current findings regarding miR-10b’s role in breast cancer are controversial. MiR-10b was originally reported to be downregulated in breast cancer compared to normal breast tissue. Subsequently, miR-10b was argued to be upregulated in metastatic breast cancer cell lines, acting as a potent pro-metastatic agent via regulation of HOXD10. This report was soon challenged by another group who reported that miR-10b expression in a large patient cohort correlated inversely and significantly with tumor size, grade, and vascular invasion, but did not correlate with development of distant metastases or survival. These latter data suggest that miR-10b may impede specific functions associated with breast cancer progression. In this thesis, I present my analysis of miR-10b function in breast carcinoma cells, which revealed that it suppresses their migration and invasion. To define a mechanism that accounts for this suppressive function, I identified T-lymphoma invasion and metastasis 1 (TIAM1), a guanine nucleotide exchange factor for Rac1, as a miR-10b target and demonstrated that miR-10b inhibits TIAM1-dependent Rac1 activation, migration, and invasion. In addition, I identified the VEGF receptor fms-related tyrosine kinase 1 (FLT-1) as a second target of miR-10b and discovered a novel function for FLT-1 in promoting breast carcinoma cell migration and invasion. My results show, for the first time, that Rac activation can be regulated by a specific miRNA and provide a novel mechanism for the regulation of TIAM1 and FLT-1 in breast cancer. These data support the conclusion from clinical data that miR-10b expression correlates inversely with breast cancer progression, and suggest that miR-10b functions to impede breast carcinoma progression by regulating key target genes involved in cell motility.
15

Autoantibodies to Centrosomes are Diagnostic for Human Scleroderma and Can Be Induced by Experimental Mycoplasma Infection in Mice: A Dissertation

Gavanescu, Irina Catrinel 20 December 2002 (has links)
The overall objective of this thesis work was to develop new insights into the etiology of scleroderma, a human systemic autoimmune disease, by analyzing the autoantibodies to centrosome antigens that develop during the disease. Centrosomes are perinuclear organelles that form microtubule arrays, including mitotic spindles that ensure the faithful segregation of chromosomes during mitosis. These studies used a novel methodology to determine the prevalence of anti-centrosome autoantibodies in patients with scleroderma. Recombinant centrosome antigens were used to determine the antigenic specificity of anti-centrosome antibody subsets by immunoblotting. Centrosome marker antibodies were used in indirect immunofluorescence assays to distinguish centrosomes within the polymorphic staining pattern frequently given by scleroderma sera. We found that 43% of patients are autoreactive to centrosomes, a prevalence higher than has been reported for any other scleroderma autoantigen. Half of the centrosome-positive patients also had autoantibodies against other antigens used in scleroderma diagnosis. However, in the remaining half of these patients, anti-centrosome antibodies represented the sole class of autoantibodies that was detectable. Anti-centrosome antibodies were detected in only a small percentage of normal individuals and patients with other connective tissue diseases. These data suggest that anti-centrosome autoantibodies may represent a new diagnostic tool in scleroderma. Upon examination of anti-centrosome autoantibody development in an animal model, it appeared that this autoantibody specificity may develop in mice as a consequence of an infection. An infectious agent was isolated by plaque-formation from carrier mice. Further characterization of the infectious agent was undertaken to obtain information on its physical, morphological and cytopathological properties. The infectious agent was identified by sequence and unique antigenic properties to be homologous to the pig pathogen Mycoplasma hyorhinis. When reintroduced into naive mice, the murine mycoplasma triggered anti-centrosome autoantibody development. While anti-centrosome autoantibodies of IgM isotype are part of the repertoire of naive unimmunized mice, mycoplasma infection specifically triggered the development of anti-centrosome IgG. Moreover, centrosome autoreactivity was prevented by antibiotic treatment. The autoantibody response evolved to recruit additional specificities, having IgM isotypes, reactive to endoplasmic reticulum-associated autoantigens.
16

Warburg or reverse Warburg effect: Tumor microenvironment reprograms breast cancer metabolism to upregulate cell proliferation

Wang, Elaine 01 January 2018 (has links)
Cancer cells are most clearly characterized by their abnormal and uncontrolled cell growth. One of the most notable theories that explains the vast proliferative capacity of tumorigenic cells is the Warburg effect, a significant shift in metabolism wherein cancer cells preferentially fuel cell division using aerobic glycolysis instead of aerobic respiration. This upregulation of glycolytic fermentation in aerobic environments is highly unusual - glycolysis is typically utilized in anaerobic conditions, but nonetheless dominates cancer metabolic activity in spite of the presence of oxygen. Since the discovery the Warburg effect in the 1920s, researchers have struggled to identify whether aerobic glycolysis is a cause or consequence of carcinogenesis. Interestingly, a new theory recently emerged that challenges this widely-accepted metabolic paradigm for cancer. Known as the reverse Warburg effect, this new mechanism shows that in carcinomas such as breast cancer, the Warburg effect occurs not in cancer cells, but rather in tumor-adjacent stromal fibroblasts. These cancer-associated fibroblasts (CAFs) in the greater tumor microenvironment produce lactate - a high-energy metabolite formed as a byproduct of aerobic glycolysis - to fuel aerobic respiration and rapid tumorigenesis in neighboring cancer cells. This emerging theory emphasizes the pivotal role of the tumor microenvironment in determining whether cancer cells undergo aerobic glycolysis or aerobic respiration. Central to this lactate-linked metabolic intersection are two critical enzymes that regulate a cell's metabolic commitment - lactate dehydrogenase (LDH) and pyruvate dehydrogenase complex (PDHc). In order to clarify the mechanisms through which CAFs induce tumorigenesis in breast cancer, we plan to carry out two specific aims: (1) evaluate the enzymatic activity of LDH and PDHc, and (2) compare LDH and PDHc enzyme content. Using co-culture techniques to study the breast cancer tumor microenvironment in vitro, we will compare the enzymatic activity and enzyme content of both MCF7 breast cancer cells and CAFs to identify whether the reverse Warburg effect occurs due to post-translational enzyme activation or increased enzyme synthesis.
17

Expression of lysyl hydroxylases and characterization of a novel disorder caused by mutations in the lysyl hydroxylase 3 gene

Salo, A. (Antti) 18 August 2009 (has links)
Abstract Collagens and collagenous proteins undergo several post-translational modifications that are important for their structure and functions. Lysine hydroxylation produces hydroxylysines, which are important for collagen cross-link formation and provide attachment sites for galactose and glucosylgalactose. Glycosylated hydroxylysines are crucial for embryonic development and the assembly of certain collagen types. They may also facilitate interactions between collagen and adjacent molecules as well as control the diameter of collagen fibrils. Lysine hydroxylation is catalyzed by three lysyl hydroxylases (LH1, LH2 and LH3). In addition to lysyl hydroxylase activity, LH3 possesses collagen galactosyltransferase (GT) and glucosyltransferase (GGT) activities. In this study, polyclonal antibodies against the lysyl hydroxylase isoforms were produced for protein level studies to localize the expression and understand the functions of the different isoenzymes. The results indicated ubiquitous expression during embryonic development compared to the more restricted, cell and tissue specific expression patterns observed in adult mouse tissues. Differences were seen also in the alternative splicing of LH2 during embryogenesis and between tissue types. Analyses of the subcellular localization revealed that LH3 is also present in extracellular space. Tissue and cell specific differences were noted in the distribution of LH3 between cellular compartments. Substrate analysis suggested an additional and novel role for LH3 as an enzyme catalyzing lysine modifications of collagenous proteins in the extracellular space. The importance of LH1 and LH2 has been highlighted in Ehlers-Danlos type VI and Bruck syndromes, respectively. In this study, the lysyl hydroxylase 3 gene was linked to a heritable disorder for the first time. Urinary screening revealed a patient that lacked a glucosylgalactosyl derivative of a pyridinium cross-link. The GGT activity levels measured from the patient’s serum and lymphoblastoid cells were also reduced, which suggested a defect in the lysyl hydroxylase 3 gene. Genetic analyses revealed two mutations, one in each allele of LH3 in this compound heterozygous patient. Recombinant mutant proteins showed defects in lysyl hydroxylase and collagen glycosyltransferase activities, respectively. In conclusion, it was shown that a defect in LH3 catalyzed modifications leads to a novel disorder, which shares features with many other connective tissue disorders.
18

The Role of Interferon Gamma in Melanocyte Clearance During Vitiligo

Strassner, James P. 07 April 2019 (has links)
Vitiligo is an autoimmune disease in which CD8+ T cells selectively destroy melanocytes, leading to a patchy, disfiguring depigmentation of the skin. Our group and others have highlighted the central role of IFN-γ-dependent chemokines in the progression of disease; however, IFN-γ is also reported to have pleiotropic effects on melanocyte biology. We examined whether IFN-γ has a direct role in melanocyte killing. We tested the T-cell effector functions IFN-γ, Fas ligand and perforin by deleting them from autoreactive T cells used to induce vitiligo in mice. We found that disease incidence, disease severity and T cell accumulation in the skin was reduced in mice receiving adoptive transfer of either IFN-γ deficient or Fas ligand deficient gp100-specific T cells; however, perforin was dispensable and led to increased disease scores and T cell accumulation. To determine how melanocytes are affected by IFN-γ signaling during vitiligo, we performed single-cell RNA-sequencing on suction blister biopsies obtained from vitiligo and healthy subjects. We discovered that integrin expression and TGFb2 signaling was decreased only in lesional melanocyte transcriptomes. Moreover, melanocytes appear to participate in their own demise by increasing HLA expression and recruiting effector cells through the chemotactic ligand CCL18. The loss of melanocyte retention factors may explain their clean disappearance from the skin during keratinocyte turnover. Taken together, we believe IFN-γ production by autoreactive T cells in the skin leads to clean loss of melanocytes by downregulation of melanocyte retention factors and by increasing their potential to be detected by effector cells during vitiligo.
19

The Development of a Skin-Targeted Interferon-Gamma-Neutralizing Bispecific Antibody for Vitiligo Treatment

Hsueh, Ying-Chao 06 June 2022 (has links)
Despite the central role of IFNγ in vitiligo pathogenesis, systemic IFNγ neutralization is an impractical treatment option due to strong immunosuppression. However, most vitiligo patients present with less than 20% affected body surface area, which provides an opportunity for localized treatments that avoid systemic side effects. After identifying keratinocytes as key cells that amplify IFNγ signaling during vitiligo, I hypothesized that tethering an IFNγ neutralizing antibody to keratinocytes would limit anti-IFNγ effects to the treated skin for the localized treatment. To that end, I developed a bispecific antibody (BsAb) capable of blocking IFNγ signaling while binding to desmoglein expressed by keratinocytes. I characterized the effect of the BsAb in vitro, ex vivo, and in a mouse model of vitiligo. SPECT/CT biodistribution and serum assays after local footpad injection revealed that the BsAb had improved skin retention, faster elimination from the blood, and less systemic IFNγ inhibition than the non-tethered version. Furthermore, the BsAb conferred localized protection almost exclusively to the treated footpad during vitiligo that was not possible by local injection of the non-tethered anti-IFNγ antibody. Thus, keratinocyte-tethering proved effective while significantly diminishing off-tissue effects of IFNγ blockade, offering a new treatment strategy for localized skin diseases, including vitiligo.
20

Notch-1 and IGF-1 as Survivin Regulatory Pathways in Cancer: A Dissertation

Lee, Connie Wing-Ching 04 June 2008 (has links)
The 21st century brought about a dramatic increase in knowledge about genetic and molecular profiles of cancer. This information has validated the complexity of tumor cells and increased awareness of “nodal proteins”, but has yet to advance the development of rational targeted cancer therapeutics. Nodal proteins are critical cellular proteins that collect biological inputs and distribute the information across diverse biological processes. Survivin acts as a nodal protein by interfacing the multiple signals involved in mitosis and apoptosis and functionally integrate proliferation, cell death, and cellular homeostasis. By characterizing survivin as a target of both Type 1 Insulin-like Growth Factor (IGF-1) and Notch developmental signaling, we contribute to the paradigm of survivin as a nodal protein. The two signaling systems, Notch and IGF-1, regulate survivin by two independent mechanisms. Notch activation induces survivin transcription preferentially in basal breast cancer, a breast cancer subtype with poor prognosis and lack of molecular therapies. Activated Notch binds the transcription factor RBP-Jк and drives transcription from the survivin promoter. Notch mediated survivin expression increases cell cycle kinetics promoting tumor proliferation. Inhibition of Notch in a breast xenograft model reduced tumor growth and systemic metastasis. On the other hand, IGF-1 signaling drives survivin protein translation in prostate cancer cells. Binding of IGF-1 to its receptor activates downstream kinases, mammalian target of rapamycin (mTOR) and p70 S6 protein kinase (p70S6K), which modulates survivin mRNA translation to increase the apoptotic threshold. The multiple roles of survivin in tumorigenesis implicate survivin as a rational target for the “next generation” of cancer therapeutics.

Page generated in 0.2145 seconds