Spelling suggestions: "subject:"connectome"" "subject:"connectomes""
41 |
Impact of the autoencoder-based FINTA tractogram filtering method on brain networks in subjects with Mild Cognitive Impairment / Effekten av autoencoderbaserad FINTA-traktogramfiltrering på hjärnans konnektom hos personer med mild kognitiv nedsättningPstrusiński, Teodor January 2023 (has links)
Diffusion Magnetic Resonance Imaging (dMRI) is a method for measuring molecular diffusion in biological tissue microstructure. This information can be used to predict the location and orientation of white matter fibers in the brain, a process known as tractography. Analysis of the map of neural connections can provide meaningful information about the severity or progression of neurodegenerative diseases such as Alzheimer's, and allow for early intervention to prevent progression. However, tractography has its pitfalls; current fiber-tracking algorithms suffer from generating false-positive connections and affect the reliability of structural connectivity maps. To counter this downside, tractogram filtering methods have been created to remove inaccurately predicted connections. This study aims at evaluating the impact of the novel semi-supervised filtering method FINTA on the brain networks of people with Mild Cognitive Impairment (MCI), which precedes diseases like Alzheimer's. The proposed experiments use the Nipype Neuroimaging Python library for the automation of the entire process. Registration, parcellation, and tracking were performed using MRtrix and FSL. Furthermore, DIPY and NiBabel were used for tractogram processing. Finally, filtering was performed based on code provided by the authors of FINTA, and graph measures were computed using the NetworkX Python library. Experiments were performed on both raw and weighted structural connectivity matrices. Results suggest that filtering has an effect on graph measures such as the clustering coefficient and betweenness centrality for different nodes corresponding to brain regions. / Diffusion magnetisk resonanstomografi (diffusions MRT) är en metod för att mäta den molekylära diffusionen i mikrostrukturen i biologisk vävnad. Denna information kan användas för att förutsäga var fibrerna i den vita substansen i hjärnan befinner sig och hur de är orienterade i den process som kallas traktografi. Analys av kartan över nervförbindelser kan ge meningsfull information om svårighetsgraden eller utvecklingen av neurodegenerativa sjukdomar som Alzheimers och möjliggöra tidiga insatser för att förhindra utvecklingen. Traktografi har dock sina fallgropar och nuvarande algoritmer för fiberspårning lider av att generera falska positiva anslutningar och påverkar de strukturella konnektivitetskartorna som förhindrar tillförlitliga förutsägelser. För att motverka denna nackdel har filtreringsmetoder för traktogram skapats för att ta bort de felaktigt förutsagda anslutningarna. Denna studie syftar till att utvärdera effekterna av den nya semi-övervakade filtreringsmetoden FINTA på hjärnnätverk hos personer med lindrig kognitiv störning (eng. mild cognitive impairment, MCI) som föregår sjukdomar som Alzheimers. I de föreslagna experimenten används Python-biblioteket Nipype Neuroimaging för automatisering av hela processen. Registrering, parcellering och spårning gjordes med hjälp av MRtrix och FSL, dessutom användes DIPY och NiBabel för traktogrambehandling. Slutligen utfördes filtrering baserat på kod från författarna till FINTA och grafmått beräknades med hjälp av NetworkX Python-bibliotek. Experimenten utfördes på råa och viktade strukturella konnektivitetsmatriser. Resultaten tyder på att filtrering har en effekt på grafmått som klustringskoefficient och betweenness centrality för olika noder som motsvarar hjärnregioner.
|
42 |
Multi-Site Structural Magnetic Resonance Imaging of MyelinYoganathan, Laagishan January 2019 (has links)
Multi-site MRI studies collect large amounts of data in a short time frame. Large sample sizes are desirable to address power and replicability issues that have been problematic for scientists in the past. Although multi-site MRI solves the sample size problem, it brings with it a new set of challenges. Scanning the same person at different sites might result in differences in MRI derived measurements. In this thesis we compared three approaches to facilitate the analysis of multi-site MRI data: quantitative R1 mapping, adding site as a covariate in a linear model, and using the ComBat method. We also investigated the relationship between two common MRI measurements: signal and volume. We collected data from 64 healthy participants across 3 GE scanners and 1 Siemens scanner at 3T. We found that signal intensity was different between vendors whereas volume was not. Our R1 method resulted in values that were different across vendor and significantly lower than those reported in the literature. B1+ maps used to calculate R1 were different across sites. Using a scale factor, we were able to compensate for mistakes in R1 mapping. We also found that adding site as a covariate corrected mean differences in signal intensity across sites, but not differences in variance. The ComBat method gave best similarity between sites. However, since different people were scanned at each site, we couldn’t evaluate the effectiveness of each method as variation in the data could have been due to site effects or heterogeneity in participants. White matter volume and signal intensity in the white matter were correlated in males but not in females. We found that this low correlation was caused by outliers in our female sample. The correlation between white matter volume and signal in males suggests that both metrics are measuring myelin and can be used as converging evidence to detect changes in brain myelination. / Thesis / Master of Science (MSc)
|
43 |
A network science approach of the macroscopic organization of the brain: analysis of structural and functional brain networks in health and diseaseDíaz Parra, Antonio 10 September 2018 (has links)
El cerebro está constituido por numerosos elementos que se encuentran interconectados de forma masiva y organizados en módulos que forman redes jerárquicas. Ciertas patologías cerebrales, como la enfermedad de Alzheimer y el trastorno por consumo de alcohol, se consideran el resultado de efectos en cascada que alteran la conectividad cerebral.
La presente tesis tiene como objetivo principal la aplicación de las técnicas de análisis de la ciencia de redes para el estudio de las redes estructurales y funcionales en el cerebro, tanto en un estado control como en un estado patológico. Así, en el primer estudio de la presente tesis se examina la relación entre la conectividad estructural y funcional en la corteza cerebral de la rata. Se lleva a cabo un análisis comparativo entre las conexiones estructurales en la corteza cerebral de la rata y los valores de correlación calculados sobre las mismas regiones. La información acerca de la conectividad estructural se ha obtenido a partir de estudios previos, mientras que la conectividad funcional se ha calculado a partir de imágenes de resonancia magnética funcional. Determinadas propiedades topológicas, y extraídas de la conectividad estructural, se relacionan con la organización modular de las redes funcionales en estado de reposo. Los resultados obtenidos en este primer estudio demuestran que la conectividad estructural y funcional cortical están altamente relacionadas entre sí.
Estudios recientes sugieren que el origen de la enfermedad de Alzheimer reside en un mecanismo en el cual depósitos de ovillos neurofibrilares y placas de beta-amiloide se acumulan en ciertas regiones cerebrales, y tienen la capacidad de diseminarse por el cerebro actuando como priones. En el segundo estudio de la presente tesis se investiga si las redes estructurales que se generan con la técnica de resonancia magnética ponderada en difusión podrían ser de utilidad para el diagnóstico de la pre-demencia causada por la enfermedad de Alzheimer. Mediante el uso de imágenes procedentes de la base de datos ADNI, se aplican técnicas de aprendizaje máquina con el fin de identificar medidas de centralidad que se encuentran alteradas en la demencia. En la segunda parte del estudio, se utilizan imágenes procedentes de la base de datos NKI para construir un modelo matemático que simule el proceso de envejecimiento normal, así como otro modelo que simule el proceso de desarrollo de la enfermedad. Con este modelado matemático, se pretende estimar la etapa más temprana que está asociada con la demencia. Los resultados obtenidos de las simulaciones sugieren que en etapas tempranas de la enfermedad de Alzheimer se producen alteraciones estructurales relacionados con la demencia.
La cuantificación de la relación estadística entre las señales BOLD de diferentes regiones puede informar sobre el estado funcional cerebral característico de enfermedades neurológicas y psiquiátricas. En el tercer estudio de la presente tesis se estudian las alteraciones en la conectividad funcional que tienen lugar en ratas dependientes del consumo de alcohol cuando se encuentran en estado de reposo. Para ello, se ha aplicado el método NBS. El análisis de este modelo de rata revela diferencias estadísticamente significativas en una subred de regiones cerebrales que están implicadas en comportamientos adictivos. Por lo tanto, estas estructuras cerebrales podrían ser el foco de posibles dianas terapéuticas.
La tesis aporta tres innovadoras contribuciones para entender la conectividad cerebral bajo la perspectiva de la ciencia de redes, tanto en un estado control como en un estado patológico. Los resultados destacan que los modelos basados en las redes cerebrales permiten esclarecer la relación entre la estructura y la función en el cerebro. Y quizás más importante, esta perspectiva de red tiene aplicaciones que se podrían trasladar a la práctica clínica. / The brain is composed of massively connected elements arranged into modules that form hierarchical networks. Experimental evidence reveals a well-defined connectivity design, characterized by the presence of strategically connected core nodes that critically contribute to resilience and maintain stability in interacting brain networks. Certain brain pathologies, such as Alzheimer's disease and alcohol use disorder, are thought to be a consequence of cascading maladaptive processes that alter normal connectivity. These findings have greatly contributed to the development of network neuroscience to understand the macroscopic organization of the brain.
This thesis focuses on the application of network science tools to investigate structural and functional brain networks in health and disease. To accomplish this goal, three specific studies are conducted using human and rodent data recorded with MRI and tracing technologies.
In the first study, we examine the relationship between structural and functional connectivity in the rat cortical network. Using a detailed cortical structural matrix obtained from published histological tracing data, we first compare structural connections in the rat cortex with their corresponding spontaneous correlations extracted empirically from fMRI data. We then show the results of this comparison by relating structural properties of brain connectivity to the functional modularity of resting-state networks. Specifically, we study link reciprocity in both intra- and inter-modular connections as well as the structural motif frequency spectrum within functionally defined modules. Overall, our results provide further evidence that structural connectivity is coupled to and shapes functional connectivity in cortical networks.
The pathophysiological process of Alzheimer's disease is thought to begin years before clinical decline, with evidence suggesting pahtogenic seeding and subsequent prion-like spreading processes of neurofibrillary tangles and amyloid plaques. In the second study of this thesis, we investigate whether structural brain networks as measured with dMRI could serve as a complementary diagnostic tool in prodromal dementia. Using imaging data from the ADNI database, we first aim to implement machine learning techniques to extract centrality features that are altered in Alzheimer's dementia. We then incorporate data from the NKI database and create dynamical models of normal aging and Alzheimer's disease to estimate the earliest detectable stage associated with dementia in the simulated disease progression. Our model results suggest that changes associated with dementia begin to manifest structurally at early stages.
Statistical dependence measures computed between BOLD signals can inform about brain functional states in studies of neurological and psychiatric disorders. Furthermore, its non-invasive nature allows comparable measurements between clinical and animal studies, providing excellent translational capabilities. In the last study, we apply the NBS method to investigate alterations in the resting-state functional connectivity of the rat brain in a PD state, an established animal model of clinical relevant features in alcoholism. The analysis reveal statistically significant differences in a connected subnetwork of structures with known relevance for addictive behaviors, hence suggesting potential targets for therapy.
This thesis provides three novel contributions to understand the healthy and pathological brain connectivity under the perspective of network science. The results obtained in this thesis underscore that brain network models offer further insights into the structure-function coupling in the brain. More importantly, this network perspective provides potential applications for the diagnosis and treatment of neurological and psychiatric disorders. / El cervell està constituït per nombrosos elements que es troben interconnectats de forma massiva i organitzats en mòduls que formen xarxes jeràrquiques. Certes patologies cerebrals, com la malaltia d'Alzheimer i el trastorn per consum d'alcohol, es consideren el resultat d'efectes en cascada que alteren la connectivitat cerebral.
La present tesi té com a objectiu principal l'aplicació de les tècniques d'anàlisi de la ciència de xarxes per a l'estudi de les xarxes estructurals i funcionals en el cervell, tant en un estat control com en un estat patològic. Així, en el primer estudi de la present tesi s'examina la relació entre la connectivitat estructural i funcional en l'escorça cerebral de la rata. Es du a terme una anàlisi comparativa entre les connexions estructurals en l'escorça cerebral de la rata i els valors de correlació calculats sobre les mateixes regions. La informació sobre la connectivitat estructural s'ha obtingut a partir d'estudis previs, mentre que la connectivitat funcional s'ha calculat a partir d'imatges de ressonància magnètica funcional. Determinades propietats topològiques, i extretes de la connectivitat estructural, es relacionen amb l'organització modular de les xarxes funcionals en estat de repòs. Els resultats obtinguts en este primer estudi demostren que la connectivitat estructural i funcional cortical estan altament relacionades entre si.
Estudis recents suggereixen que l'origen de la malaltia d'Alzheimer resideix en un mecanisme en el qual depòsits d'ovulets neurofibrilars i plaques de beta- miloide s'acumulen en certes regions cerebrals, i tenen la capacitat de disseminar-se pel cervell actuant com a prions. En el segon estudi de la present tesi s'investiga si les xarxes estructurals que es generen amb la tècnica de la imatge per ressonància magnètica ponderada en difusió podrien ser d'utilitat per al diagnòstic de la predemència causada per la malaltia d'Alzheimer. Per mitjà de l'ús d'imatges procedents de la base de dades ADNI, s'apliquen tècniques d'aprenentatge màquina a fi d'identificar mesures de centralitat que es troben alterades en la demència. En la segona part de l'estudi, s'utilitzen imatges procedents de la base de dades NKI per a construir un model matemàtic que simule el procés d'envelliment normal, així com un altre model que simule el procés de desenrotllament de la malaltia. Amb este modelatge matemàtic, es pretén estimar l'etapa més primerenca que està associada amb la demència. Els resultats obtinguts de les simulacions suggereixen que en etapes primerenques de la malaltia d'Alzheimer es produeixen alteracions estructurals relacionats amb la demència.
La quantificació de la relació estadística entre els senyals BOLD de diferents regions pot informar sobre l'estat funcional cerebral característic de malalties neurològiques i psiquiàtriques. A més, a causa de la seua naturalesa no invasiva, és possible comparar els resultats obtinguts entre estudis clínics i estudis amb animals d'experimentació. En el tercer estudi de la present tesi s'estudien les alteracions en la connectivitat funcional que tenen lloc en rates dependents del consum d'alcohol quan es troben en estat de repòs. Per a realitzar-ho, s'ha aplicat el mètode NBS. L'anàlisi d'aquest model de rata revela diferències estadísticament significatives en una subxarxa de regions cerebrals que estan implicades en comportaments addictius. Per tant, estes estructures cerebrals podrien ser el focus de possibles dianes terapèutiques.
La tesi aporta tres innovadores contribucions per a entendre la connectivitat cerebral davall la perspectiva de la ciència de xarxes, tant en un estat control com en un estat patològic. Els resultats destaquen que els models basats en les xarxes cerebrals permeten aclarir la relació entre l'estructura i la funció en el cervell. I potser més important, esta perspectiva de xarxa té aplicacions que es podrien traslladar a la pràcti / Díaz Parra, A. (2018). A network science approach of the macroscopic organization of the brain: analysis of structural and functional brain networks in health and disease [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/106966
|
44 |
The Social Connectome – Moving Toward Complexity in the Study of Brain Networks and Their Interactions in Social Cognitive and Affective NeuroscienceMaliske, Lara, Kanske, Philipp 22 May 2024 (has links)
Over the past 150 years of neuroscientific research, the field has undergone a tremendous evolution. Starting out with lesion-based inference of brain function, functional neuroimaging, introduced in the late 1980s, and increasingly fine-grained and sophisticated methods and analyses now allow us to study the live neural correlates of complex behaviors in individuals and multiple agents simultaneously. Classically, brain-behavior coupling has been studied as an association of a specific area in the brain and a certain behavioral outcome. This has been a crucial first step in understanding brain organization. Social cognitive processes, as well as their neural correlates, have typically been regarded and studied as isolated functions and blobs of neural activation. However, as our understanding of the social brain as an inherently dynamic organ grows, research in the field of social neuroscience is slowly undergoing the necessary evolution from studying individual elements to how these elements interact and their embedding within the overall brain architecture. In this article, we review recent studies that investigate the neural representation of social cognition as interacting, complex, and flexible networks. We discuss studies that identify individual brain networks associated with social affect and cognition, interaction of these networks, and their relevance for disorders of social affect and cognition. This perspective on social cognitive neuroscience can highlight how a more fine-grained understanding of complex network (re-)configurations could improve our understanding of social cognitive deficits in mental disorders such as autism spectrum disorder and schizophrenia, thereby providing new impulses for methods of interventions.
|
45 |
Connectivity driven registration of magnetic resonance images of the human brainPetrovic, Aleksandar January 2010 (has links)
Image registration methods underpin many analysis techniques in neuroimaging. They are essential in group studies when images of different individuals or different modalities need to be brought into a common reference frame. This thesis explores the potential of brain connectivity- driven alignment and develops surface registration techniques for magnetic resonance imaging (MRI), which is a noninvasive neuroimaging tool for probing function and structure of the human brain. The first part of this work develops a novel surface registration framework, based on free mesh deformations, which aligns cortical and subcortical surfaces by matching structural connectivity patterns derived using probabilistic tractography (diffusion-weighted MRI). Structural, i.e. white matter, connectivity is a good predictor of functional specialisation and structural connectivity-driven registration can therefore be expected to enhance the alignment of functionally homologous areas across subjects. The second part validates developed methods for cortical surfaces. Resting State Networks are used in an innovative way to delineate several functionally distinct regions, which were then used to quantify connectivity-driven registration performance by measuring the inter- subject overlap before and after registration. Consequently, the proposed method is assessed using an independent imaging modality and the results are compared to results from state-of-the-art cortical geometry-driven surface registration methods. A connectivity-driven registration pipeline is also developed for, and applied to, the surfaces of subcortical structures such as the thalamus. It is carefully validated on a set of artificial test examples and compared to another novel surface registration paradigm based on spherical wavelets. The proposed registration pipeline is then used to explore the differences in the alignment of two groups of subjects, healthy controls and Alzheimer's disease patients, to a common template. Finally, we propose how functional connectivity can be used instead of structural connectivity for driving registrations, as well as how the surface-based framework can be extended to a volumetric one. Apart from providing the benefits such as the improved functional alignment, we hope that the research conducted in this thesis will also represent the basis for the development of templates of structural and functional brain connectivity.
|
46 |
Konektom u poruch autistického spektra / Connectome in Autism spectrum disordersHrašková, Markéta January 2019 (has links)
This theoretical thesis covers the issues of Autism Spectrum Disorders (ASD) in relation to the brain connectome research. ASD belong to the group of neurodevelopmental syndromes and are characterized by deficits in communication skills, social interaction and stereotypic behaviors. The prevalence of ASD increases, its etiopathogenesis is very likely multifactorial. Within the ASD syndrome, precise differential diagnostic algorithms are difficult to implement in the absence of objective biomarkers. Extensive neuroscientific research, including the connectome projects, might improve the diagnostic and therapeutic procedures in the field of Psychiatry, including ASD. The individual's connectome profile might well serve as a new biomarker in psychiatric diagnostic and therapeutic approaches. The brain connectome represents the net of all neuronal connections in the brain. Mapping of the connectome across all ages, in health and in disease, is the main goal of the Human Connectome Project (HCP). The first HCP data show great interindividual variability with the environmental factors playing a crucial role. Extensive neurobiology research data on mechanisms of memory support the vital role of environmental stimulation in compensating for behavioral symptoms in ASD. Applied behavior analysis (ABA) is an...
|
47 |
Mapping genome-wide neuropsychiatric mutation effects on functional brain connectivity : c opy number variants delineate dimensions contributing to autism and schizophreniaMoreau, Clara 04 1900 (has links)
Les recherches menées pour comprendre les troubles du spectre autistique (TSA) et la schizophrénie (SZ) ont communément utilisé une approche dite descendante, partant du diagnostic clinique pour investiguer des phénotypes intermédiaires cérébraux ainsi que des variations génétiques associées. Des études transdiagnostiques récentes ont remis en question ces frontières nosologiques, et suggèrent des mécanismes étiologiques imbriqués. L’approche montante propose de composer des groupes de porteurs d’un même variant génétique afin d’investiguer leur contribution aux conditions neuropsychiatriques (NPs) associées. Les variations du nombre de copies (CNV, perte ou gain d’un fragment d’ADN) figurent parmi les facteurs biologiques les plus associés aux NPs, et sont dès lors des candidats particulièrement appropriés. Les CNVs induisant un risque pour des conditions similaires, nous posons l’hypothèse que des classes entières de CNVs convergent sur des dimensions d’altérations cérébrales qui contribuent aux NPs. L’imagerie fonctionnelle au repos (rs-fMRI) s’est révélée un outil prometteur en psychiatrie, mais presqu’aucune étude n’a été menée pour comprendre l’impact des CNVs sur la connectivité fonctionnelle cérébrale (FC).
Nos objectifs étaient de: 1) Caractériser l’effet des CNVs sur la FC; 2) Rechercher la présence des motifs conférés par ces signatures biologiques dans des conditions idiopathiques; 3) Tester si la suppression de gènes intolérants à l’haploinsuffisance réorganise la FC de manière indépendante à leur localisation dans le génome. Nous avons agrégé des données de rs-fMRI chez: 502 porteurs de 8 CNVs associées aux NPs (CNVs-NP), de 4 CNVs sans association établie, ainsi que de porteurs de CNVs-NPs éparses; 756 sujets ayant un diagnostic de TSA, de SZ, ou de trouble déficitaire de l’attention/hyperactivité (TDAH), et 5377 contrôles.
Les analyses du connectome entier ont montré un effet de dosage génique positif pour les CNVs 22q11.2 et 1q21.1, et négatif pour le 16p11.2. La taille de l’effet des CNVs sur la FC était corrélée au niveau de risque psychiatrique conféré par le CNV. En accord avec leurs effets sur la cognition, l’effet des délétions sur la FC était plus élevé que celui des duplications. Nous avons identifié des similarités entre les motifs cérébraux conférés par les CNVs-NP, et l’architecture fonctionnelle des individus avec NPs. Le niveau de similarité était associé à la sévérité du CNV, et était plus fort avec la SZ et les TSA qu’avec les TDAH. La comparaison des motifs conférés par les délétions les plus sévères (16p11.2, 22q11.2) à l’échelle fonctionnelle, et d’expression génique, nous a confirmé l’existence présumée de relation entre les mutations elles-mêmes. À l’aide d’une mesure d’intolérance aux mutations (pLI), nous avons pu inclure tous les porteurs de CNVs disponibles, et ainsi identifier un profil d’haploinsuffisance impliquant le thalamus, le cortex antérieur cingulaire, et le réseau somato-moteur, associé à une diminution de mesure d’intelligence générale. Enfin, une analyse d’exploration factorielle nous a permis de confirmer la contribution de ces régions cérébrales à 3 composantes latentes partagées entre les CNVs et les NPs.
Nos résultats ouvrent de nouvelles perspectives dans la compréhension des mécanismes polygéniques à l’oeuvre dans les maladies mentales, ainsi que des effets pléiotropiques des CNVs. / Research on Autism Spectrum Disorder (ASD) and schizophrenia (SZ) has mainly adopted a ‘top-down’ approach, starting from psychiatric diagnosis, and moving to intermediate brain phenotypes and underlying genetic factors. Recent cross-disorder studies have raised questions about diagnostic boundaries and pleiotropic mechanisms. By contrast, the recruitment of groups based on the presence of a genetic risk factor allows for the investigation of molecular pathways related to a particular risk for neuropsychiatric conditions (NPs). Copy number variants (CNVs, loss or gain of a DNA segment), which confer high risk for NPs are natural candidates to conduct such bottom-up approaches.
Because CNVs have a similar range of adverse effects on NPs, we hypothesized that entire classes of CNVs may converge upon shared connectivity dimensions contributing to mental illness. Resting-state functional MRI (rs-fMRI) studies have provided critical insight into the architecture of brain networks involved in NPs, but so far only a few studies have investigated networks modulated by CNVs.
We aimed at 1) Delineating the effects of neuropsychiatric variants on functional connectivity (FC), 2) Investigating whether the alterations associated with CNVs are also found among idiopathic psychiatric populations, 3) Testing whether deletions reorganize FC along general dimensions, irrespective of their localization in the genome.
We gathered rsfMRI data on 502 carriers of eight NP-CNVs (high-risk), four CNVs without prior association to NPs as well as carriers of eight scarcer NP-CNVs. We also analyzed 756 subjects with idiopathic ASD, SZ, and attention deficit hyperactivity disorder (ADHD), and 5,377 controls. Connectome-wide analyses showed a positive gene dosage effect for the 22q11.2 and 1q21.1 CNVs, and a negative association for the 16p11.2 CNV. The effect size of CNVs on relative FC (mean-connectivity adjusted) was correlated with the known level of NP-risk conferred by CNVs. Consistent with results on cognition, we also reported that deletions had a larger effect size on FC than duplications. We identified similarities between high-risk CNV profiles and the connectivity architecture of individuals with NPs. The level of similarity was associated with mutation severity and was strongest in SZ, followed by ASD, and ADHD. The similarity was driven by the thalamus, and the posterior cingulate cortex, previously identified as hubs in transdiagnostic psychiatric studies. These results raised questions about shared mechanisms across CNVs. By comparing deletions at the 16p11.2 and 22q11.2 loci, we identified similarities at the connectivity, and at the gene expression level. We extended this work by pooling all deletions available for analysis. We asked if connectivity alterations were associated with the severity of deletions scored using pLI, a measure of intolerance to haploinsufficiency. The haploinsufficiency profile involved the thalamus, anterior cingulate cortex, and somatomotor network and was correlated with lower general intelligence and higher autism severity scores in 3 unselected and disease cohorts. An exploratory factor analysis confirmed the contribution of these regions to three latent components shared across CNVs and NPs.
Our results open new avenues for understanding polygenicity in psychiatric conditions, and the pleiotropic effect of CNVs on cognition and on risk for neuropsychiatric disorders.
|
Page generated in 0.0453 seconds