Spelling suggestions: "subject:"conservation planning"" "subject:"konservation planning""
61 |
Population modeling in conservation planning of the Lower Keys marsh rabbitLaFever, David Howard 30 October 2006 (has links)
Rapid development and urbanization of the Lower Florida Keys in the last 30
years has fragmented the habitat of the Lower Keys marsh rabbit (Sylvilagus palustris
hefneri) and threatened it with extinction. Current threats exist at multiple
spatiotemporal scales and include threats due to development, invasive species, and
global climate change. On Boca Chica Key, the Lower Keys marsh rabbit (LKMR)
exists as a metapopulation on Naval Air Station-Key West (NASKW). I conducted a
population viability analysis to determine the metapopulation's risk of extinction under
multiple management scenarios by developing a spatially-explicit, stage-structured,
stochastic matrix model using the programs RAMAS Metapop and ArcGIS. These
management scenarios include clearance of airfield vegetation, habitat conversion, and
control of feral cats as an invasive species. Model results provided the Navy with
relative risk estimates under these different scenarios. Airfield clearance with habitat
conversion increased extinction risk, but when coupled with feral cat control, risk was
decreased.
Because of the potential of sea-level rise due to human-induced global climate
change, and its projected impact on the biodiversity of the Florida Keys, I estimated the impacts of rising sea levels on LKMR across its geographic distribution under scenarios
of no, low (0.3m), medium (0.6m), and high (0.9m) sea-level rise. I also investigated
impacts due to 2 treatments (allowing vegetation to migrate upslope and not allowing
migration), and 2 land-use planning decisions (protection and abandonment of humandominated
areas). Not surprisingly, under both treatments and both land-use planning
decisions, I found a general trend of decreasing total potential LKMR habitat with
increasing sea-level rise. Not allowing migration and protecting human-dominated areas
both tended to decrease potential LKMR habitat as compared with allowing migration
and abandoning human-dominated areas. In conclusion, conservation strategies at
multiple scales need to be implemented in order to reduce threats to LKMR, such as
development, invasive species, and global climate change.
|
62 |
Catastrophes, resilience, and the theory of designing marine reservesEdward Game Unknown Date (has links)
Chronic anthropogenic disturbance has left many marine systems at risk of degrading into undesirable states. In many cases, ecosystem shifts are triggered by catastrophic disturbance events that are beyond the control of local management, such as coral bleaching or cyclones. Recognition of this risk has instigated what has been referred to as a new paradigm for marine stewardship; managing areas with the explicit goal of maintaining ecosystem resilience. Despite this, there has been little synthetic influence of resilience theory on marine conservation planning. This thesis focuses on how to make good decisions regarding the selection of marine protected areas (MPAs), in the face of catastrophic disturbance events and for the conservation of highly dynamic marine systems. Large-scale catastrophic events, although rare, lie generally beyond the control of local management and can prevent marine reserves from achieving biodiversity outcomes. In Chapter 2, I formulate a new conservation planning problem that aims to minimize the probability of missing marine conservation targets as result of catastrophic events. To illustrate this approach, I address the problem of minimizing the impact of large scale coral bleaching events on a reserve system for the Great Barrier Reef, Australia. By explicitly considering the threat of catastrophic bleaching as part of the reserve design problem, it was possible to substantially improve the likely persistence of coral reefs within reserve networks, for a negligible increase in reserve cost. The results also demonstrate that simply aiming to protect the reefs at lowest risk of catastrophic bleaching does not necessarily lead to the best conservation outcomes. It is thought that recovery of marine habitats from uncontrollable disturbance may be faster in marine reserves than in unprotected habitats. But which marine habitats should be protected, those areas at greatest risk or those at least risk? In Chapter 3, I define this problem mathematically for two alternate conservation objectives and determine under which conditions each of the different protection strategies are optimal. With regard to the risk of uncontrollable disturbance, the optimal protection strategy depends on both the conservation objective and the expected rate of habitat recovery inside and outside protected areas. I illustrate this decision making with an example of cyclone disturbance of coral reefs on Australia’s Great Barrier Reef. An adequate consideration of risk can indicate surprising routes to conservation success. The resilience of coral reef systems is closely linked to the presence of grazing herbivores. Although herbivore populations are generally protected through permanent static reserves, the benefits of protection are dynamic in both time and space. Periodically moving protection between reefs allows access to the greatest potential benefits of reservation and can help address social reluctance to permanently close areas. Using analytic methods to solve a theoretical case study, I demonstrate that periodically rotating protection around a reef system can lead to greater average reef resilience than under static protection, but only if the overall level of reservation is high enough or the rotation does not include all reefs in the system. The past ten years have seen increasing enthusiasm for MPAs as a tool for pelagic conservation. However, numerous criticisms have been levelled against the use of place-based management in such a dynamic environment. Evidence, tools and information to address these criticisms and establish the feasibility and relevance of pelagic MPAs are dispersed across the conservation, oceanography and fisheries management literature. In Chapter 5, I review this information and present a synthetic framework for systematic planning of pelagic MPAs. Although many of the lessons learned so far about MPA design in coastal systems can be transferred to pelagic systems, there are some fundamental differences and new challenges involved in the conservation of patchy and highly dynamic resources. These challenges are very much at the leading edge of new conservation science and are likely to stimulate solutions with impact far beyond the design of pelagic MPAs.
|
63 |
Going Beyond Paper Parks in Marine Conservation: The Role of Institutions and Governance of Marine Reserves in the Gulf of California, MexicoJanuary 2017 (has links)
abstract: In the face of increasing anthropogenic threats to marine systems, marine reserves
have become a popular tool to promote sustainable fisheries management and protect marine biodiversity. However, the governance structures that determine marine reserve success are not well understood. The response of resource users to reserve establishment, as well as the socioeconomic, institutional, and political contexts in which they occur, are rarely considered during reserve implementation. I use the Coupled Infrastructure Systems (CIS) framework to better understand the interdependencies between social, economic, natural, and institutional processes affecting reserve implementation and performance efficacy in the Gulf of California, Mexico. I used a combination of interviews, qualitative case study comparisons, and systematic conservation planning tools to evaluate the role of different infrastructures, institutions, and governance for marine reserve efficacy in the Gulf of California, Mexico. At a local scale, I assessed stakeholder perceptions, preferences, and knowledge on reserves in the Midriff Islands sub-region of the Gulf. My results show differences in fisher perceptions about the use of reserves for biodiversity conservation and fisheries management, misconceptions about their location, and non-compliance behavior problems. At the regional scale, I explored the trajectories of reserve implementation and performance. I show that capacity-building programs and effective collaboration between non-profit organizations, environmental, fisheries, and other government authorities are essential to coordinate efforts leading to the provisioning of infrastructure that enables effective marine reserves. Furthermore, these programs help facilitate the incorporation of fishers into diversified management and economic activities. Infrastructure provision tradeoffs should be carefully balanced for designing scientifically-sound reserves that can achieve fisheries recovery objectives and incorporating stakeholder engagement processes during the planning phase that allow fishers to include their preferences in a way that complements proposed reserve network solutions. Overall, my results highlight the importance of multiple infrastructures in understanding the dynamics of interacting action situations at various stages of marine reserve implementation and operation. I identify strengths and weaknesses within marine reserve systems that help understand what combinations of infrastructures can be influenced to increase marine reserve effectiveness and robustness to internal and external challenges, as well as delivering benefits for both nature and people. / Dissertation/Thesis / Doctoral Dissertation Environmental and Resource Management 2017
|
64 |
Au-delà des espèces, comment protéger simultanément l'histoire évolutive, le fonctionnement des écosystèmes et les services procurés par la nature / Beyond species, how to preserve evolutionary history, ecosystem functioning and the direct benefit human obtain from natureZupan, Laure 24 June 2014 (has links)
La biodiversité est définie comme la variété et la variabilité du monde vivant sous toutes ses formes. Elle est souvent appréhendée par la richesse en espèces. Pourtant il existe d'autres « facettes » de la biodiversité (telles que la diversité phylogénétique et fonctionnelle) qui sont à considérer pour comprendre la plupart des processus évolutifs et écologiques. Aujourd'hui, la prise en compte de ces différentes facettes ainsi que les services des écosystèmes –bénéfices que les humains retirent directement des écosystèmes – sont au cœur de l'agenda européen de la conservation. Cependant pour mettre en place de nouvelles actions, une meilleure compréhension des variations spatiales de ces différentes facettes et de leurs relations avec les services des écosystèmes est nécessaire. Ce travail visait à quantifier, décrire et comprendre la distribution de la richesse spécifique et de la diversité phylogénétique et fonctionnelle des tétrapodes d'Europe et leurs liens avec les services écosystémiques. L'étude des patrons spatiaux de la diversité phylogénétique pour différents groupes taxonomiques a montré une absence de recouvrement, une protection inégale et a permis d'identifier des zones particulières d'histoire évolutive indétectables par le prisme unique de la richesse spécifique. Alors que les facteurs environnementaux liés au climat (comme la température ou la productivité primaire) semblent être prépondérant pour expliquer la distribution de chaque facette de diversité, leurs influences respectives varient selon la facette considérée. Enfin, la comparaison de différents scénarios de conservation dans lesquels plus d'importance est donnée soit à la protection de la biodiversité soit à celle des services écosystémiques a mis en avant des relations complexes (synergies et compromis) et non prédictibles mettant en évidence les enjeux liés à la protection simultanée de plusieurs groupes d'espèces, plusieurs facettes de diversité et d'un éventail de services écosystémiques. / Biodiversity is defined as the variety and variability of living organisms on Earth and is often measured through species richness. However, biodiversity is composed of other facets (e.g. phylogenetic and functional diversity) that need to be considered to account for evolutionary and ecological processes. Considering these multiple facets of biodiversity together with ecosystem services – direct benefit human obtain from nature – is central in the European conservation agenda. However, to propose new planning strategies, a better understanding of the spatial variation of these different facets and their relationships to ecosystem services is crucial. The objective of this Ph. D. project was to better quantify, describe and understand the spatial variation of different biodiversity facets and analyse their links to ecosystem services. The study of spatial pattern of phylogenetic diversity showed a low overlap between the different taxonomic groups and an unequal protection within the current European protected areas system. This analysis allowed identifying areas of particular evolutionary history, which would be undetectable through the unique lens of species richness. Although environmental factors related to climate (e.g. temperature, primary productivity) seemed to best explain each facet, their relative importance varied across biodiversity facets. Finally a comparison of conservation scenarios where priority was given either to protecting biodiversity protection or to protecting ecosystem services highlighted complex and unpredictable relationships (synergies and trade-offs) and stressed out the stakes linked to the simultaneous protection of different facets of diversity of multiple taxonomic groups and a set of ecosystem services.
|
65 |
Distribuição potencial e atual do tamanduá-bandeira (Myrmecophaga tridactyla) e indicação de áreas prioritárias para sua conservação / Potential and current distribution of giant anteater (Myrmecophaga tridactyla) and identification of priority areas for its conservationVinicius Alberici Roberto 11 December 2017 (has links)
O tamanduá-bandeira (Myrmecophaga tridactyla) se distribui amplamente ao longo da região Neotropical, porém é provável que esteja extinto da maior parte de sua extensão original, notadamente na América Central e nos limites austrais de sua distribuição. O táxon está ameaçado de extinção globalmente (IUCN) e também em âmbito nacional. Embora historicamente a espécie ocorra em todos os biomas brasileiros, hoje é considerada extinta nos Pampas, quase extinta na Mata Atlântica, sendo que na Caatinga sua presença necessita de confirmação e no Cerrado suas populações vem sofrendo drásticas reduções. Atualmente não há estudos de revisão da distribuição da espécie nos biomas brasileiros, tão pouco foi avaliado se as áreas mais adequadas à espécie estão sendo protegidas e o conhecimento existente é insuficiente para adotar estratégias de conservação adequadas. Dessa maneira, o presente estudo teve como principal objetivo modelar a distribuição potencial e atual do tamanduá-bandeira no Brasil e nos biomas brasileiros, a fim de identificar quais variáveis preditoras melhor explicam a ocorrência da espécie em diferentes escalas. Além disso, a partir dos modelos de distribuição atual, os biomas foram avaliados quanto à adequabilidade ambiental (i.e. probabilidade de presença) e foram realizadas uma análise de lacunas e a identificação de áreas prioritárias para a conservação. A distribuição potencial do tamanduá-bandeira foi melhor explicada em escala continental, por variáveis bioclimáticas (sazonalidade de temperatura e precipitação) e topográficas (altitude), enquanto que a distribuição atual foi bem explicada nas duas escalas, por variáveis de uso e cobertura da terra (porcentagens de cobertura arbórea, de silvicultura e de cana-de-açúcar). O Cerrado foi o bioma de maior adequabilidade ambiental à espécie, seguido da Amazônia, Pantanal, Mata Atlântica e Caatinga, sendo que não foram obtidos registros recentes para os Pampas. Menos de 10% da distribuição atual do tamanduá-bandeira no Cerrado e Pantanal encontra-se protegida por Unidades de Conservação, existindo uma lacuna parcial de conservação. Áreas prioritárias para a espécie incluem um corredor central no Cerrado, grande parte do Pantanal e áreas de transição (ecótonos) com outros biomas. Os resultados obtidos neste estudo permitiram preencher lacunas de conhecimento acerca da distribuição do tamanduá-bandeira, bem como dar suporte para o planejamento de sua conservação. / The giant anteater (Myrmecophaga tridactyla) is widely distributed throughout the Neotropical region, but is probably extinct from most of its range, notably in Central America and the southern limits of its distribution. The species is listed as Vulnerable on the IUCN and national Red Lists. Although historically present in all Brazilian biomes, there are no studies reviewing its distribution, nor has it been evaluated if the Brazilian federal conservation units are protecting the areas most suitable to the species. Thus, the aim of this study was to model the potential and current distribution of the giant anteater in Brazil and Brazilian biomes, to identify which predictor variables best explain the occurrence of the species at different scales. Current distribution models were used to evaluate the biomes environmental suitability (i.e. probability of presence) and a gap analyses were performed. Also, priority areas for conservation were identified. The potential distribution of the anteater was better explained on a continental scale by bioclimatic (seasonality of temperature and precipitation) and topographic (altitude) variables, while the current distribution was well predicted in both scales, by land cover variables (percentages of tree cover, silviculture, and sugarcane). The Cerrado was the biome of greater environmental suitability to the species, followed by the Amazon, the Pantanal, the Atlantic Forest and the Caatinga. No recent records were obtained for the Pampas. Conservation units protect less than 10% of the current distribution of the giant anteater in the Cerrado and Pantanal. Priority areas for the species include a central corridor in the Cerrado, much of the Pantanal and ecotones. The results obtained in this study helped to fill knowledge gaps on the distribution of the giant anteater in Brazil, supporting actions for its conservation.
|
66 |
Vulnerabilidade de espécies às mudanças climáticas e prioridades para conservação na Amazônia / Species vulnerability to climate change and priorities for conservation in the AmazonRibeiro, Bruno Roberto 28 June 2016 (has links)
Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2016-06-29T15:32:39Z
No. of bitstreams: 2
Dissertação - Bruno Roberto Ribeiro - 2016.pdf: 3562896 bytes, checksum: fd9b7092e683ed03a087dbaaaf4011b5 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-06-30T11:23:26Z (GMT) No. of bitstreams: 2
Dissertação - Bruno Roberto Ribeiro - 2016.pdf: 3562896 bytes, checksum: fd9b7092e683ed03a087dbaaaf4011b5 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2016-06-30T11:23:26Z (GMT). No. of bitstreams: 2
Dissertação - Bruno Roberto Ribeiro - 2016.pdf: 3562896 bytes, checksum: fd9b7092e683ed03a087dbaaaf4011b5 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-06-28 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / Human-induced climate change are acknowledged as one of the major treats to biodiversity
over the 21 st century. However, species/populations are not equally affected by climate change.
Therefore, identify where and which species are more vulnerable to climate change is
paramount for guide conservation efforts. Hence, I sought to i) evaluate mamall exposure to
climate change and assess the effectiveness of Amazon network of Protected Areas (PAs) in
buffer the impacts of climate change on “critically-exposed” species; ii) develop a spatial
conservation scheme for mammals in the Brazilian Amazon that efficiently identifies highlyexposed
areas within species current and future distributions in which conservation efforts
should be targeted in order to mitigate the impacts of climate change on the biodiversity found
in the Brazilian Amazon. In general, the results indicated that mammals might face high
exposure to climate change and Protected Areas will probably not be efficient enough to avert
impacts of climate change on “critically-exposed” species. In this vein, we hope that our spatial
conservation plan may help planners and stakeholders to guide conservation efforts aiming at
mitigate impacts and avert biodiversity loss due to climate change. / As mudanças climáticas de causa antrópica são consideradas uma das principais ameaças a
biodiversidade no século XXI. Contudo, nem todas espécies/populações serão igualmente
afeadas pelas mudanças no clima. Portanto, identificar onde e quais espécies são mais
vulneráveis às mudanças climáticas é fundamental para guiar ações de conservação. Assim,
procurei i) avaliar a exposição de mamíferos da Amazônia às mudanças climáticas e se as
Unidades de Conservação desse bioma são eficientes em mitigar os efeitos das mudanças
climáticas sobre as espécies “criticamente expostas”; ii) desenvolver um esquema de
priorização para conservação de mamíferos que eficientemente identifica áreas prioritárias
dentro das áreas de distribuição atual e futura das espécies nas quais esforços de conservação
devem ser direcionados de modo a mitigar os efeitos da mudanças climáticas sobre a
biodiversidade. De modo geral, os resultados indicam que grande parte dos mamíferos poderão
ser altamente expostos às mudanças climáticas e que as atuais Unidades de Conservação
provavelmente não serão eficientes para evitar os impactos das mudanças climáticas nas
espécies “criticamente expostas”. Sendo assim, esperamos que nosso plano espacial para
conservação possa ajudar planejadores e tomadores de decisão a guiar esforços de conservação
de modo a mitigar impactos e evitar a perda da biodiversidade na Amazônia.
|
67 |
A conservação de grandes mamíferos e o planejamento de uso e ocupação da terra no Estado de São Paulo/Brasil / Large mammals\' conservation and land use planning in São Paulo State/BrazilCíntia Camila Silva Angelieri 30 September 2015 (has links)
Os grandes carnívoros necessitam de vastos territórios para sobreviver em longo prazo, sendo que sua coexistência com humanos é fundamental, porém gera conflitos. O objetivo geral dessa tese é integrar a conservação de grandes carnívoros ao processo de planejamento de uso e ocupação da terra do estado de São Paulo. Para isso os objetivos específicos são: (1) sistematizar, espacializar e analisar a ocorrência de grandes carnívoros, estabelecendo correlações com os padrões de uso e ocupação da terra, variáveis climáticas e topográficas; (2) estabelecer áreas prioritárias para conservação de grandes carnívoros no estado de São Paulo; e (3) caracterizar os padrões de uso e conservação da terra nos municípios indicando necessidades e oportunidades para conservação (ênfase em Brotas-SP). O delineamento desse estudo foi feito buscando a aplicação de Modelos de Distribuição de Espécies - MDEs (espécies estudadas: Chrysocyon brachyurus, Leopardus Pardalis e Puma concolor) em uma abordagem de Planejamento Sistemático da Conservação - PSC. Para isso, foi aplicado o algoritmo MAXENT para as análises de distribuição das espécies e o algoritmo ZONATION para análises de priorização espacial e identificação de áreas prioritárias para conservação. Os modelos gerados mostraram alto desempenho (AUCs ≥ 0.8) e foram significantes (p ≤ 0.05) para o limite de corte mais inclusivo considerado \"minimum training presence\". Apesar da plasticidade das espécies estudadas, a variável porcentagem de vegetação nativa foi uma das três mais importantes para os modelos gerados. A distribuição das espécies abrange tanto paisagens naturais quanto paisagens antropizadas, porém as áreas com alta adequabilidade ambiental (acima de 0.5) se concentram em regiões com vegetação nativa remanescente e em sua maior parte não estão protegidas em Unidades de Conservação de Proteção Integral. Os resultados das análises de priorização espacial mostraram prioridades altas para os carnívoros concentradas na região central do estado de São Paulo, onde existem conflitos entre a demanda por áreas para conservação e a demanda por áreas para desenvolvimento humano. Recomenda-se a ampliação das UCPIs nessa região e ações de manejo e conservação em propriedades privadas (ex. Reservas Legais e Áreas de Preservação Permanente). Tanto as prioridades para conservação como as prioridades para desenvolvimento são muito diferentes entre os municípios do estado de São Paulo. Sendo assim, as estratégias precisam ser elaboradas caso a caso em escala municipal. Brotas possui localização estratégica na conservação de grandes carnívoros com alta porcentagem de áreas núcleo e alto potencial ecoturístico, sendo recomendada a expansão de UCPIs e a restauração da vegetação nativa para ampliar a proteção de grandes carnívoros. Os resultados desse estudo devem informar o processo de tomada de decisão (Ex. Planos de Ação para Conservação de Espécies Ameaçadas; Zoneamentos; Avaliações de Impactos Ambientais) e a abordagem metodológica serve como um modelo para orientar processos semelhantes que visam à conservação de espécies em outras regiões. / Large carnivores need large territories to survive in long term, requiring the use of existing protected areas and private properties with many land uses types and human occupation levels for dispersion and as additional habitat. Thus, the coexistence between large carnivores and humans is essential. However, it leads to conflicts of interest. The overall objective of this thesis is to integrate the conservation of large mammals to land use planning process in São Paulo State, Brazil. For this, the specific objectives are: (1) to systematize, to spatialize and to analyze the occurrence of large mammals, establishing correlations between large mammals distribution and land use patterns, climatic and topographic variables; (2) to establish priority areas for conservation of large mammals in São Paulo State; and (3) to characterize the land use and conservation patterns in São Paulo\'s municipalities (emphasis in Brotas-SP). The design of this study aimed to apply Species Distribution Models tools (species studied: Chrysocyon brachyurus, Leopardus Pardalis and Puma concolor) in an approach of Systematic Conservation Planning. For this, MAXENT algorithm was applied for species distribution modelling and Zonation algorithm was applied for spatial prioritization analysis and conservation priority areas identification. All models were significant (p ≤ 0.05) considering the minimum training presence threshold showing high performance (AUC ≥ 0.8). Despite the plasticity of the species, the variable percentage of native vegetation was one of the top three most important for all models. The distribution of the species covers both natural and disturbed landscapes, but high environmental suitability areas (up to 0.5) concentrate in regions with native vegetation fragments. However the most part of these areas are not protected by law. Spatial prioritization results showed high priorities for carnivores concentrate in the central region of São Paulo, where there are conflicts there are both high demand for carnivore conservation and high demand for human development. Conservation strategies need to be developed case by case because both priorities for conservation and priorities for development were showed very different between the municipalities. For example, Brotas is strategic for carnivore\'s conservation, having high percentage of core areas in its territory and high ecotourism potential. However the percent of native vegetation cover is low. Therefore, it is recommended protected areas expansion and native vegetation restoration to increase the protection of large carnivores in Brotas. This study highlights the importance of a landscape planning approach to improve the conservation outlook for large mammals, including not only the establishment and management of protected areas, but also native habitat conservation and management on private lands. Importantly, the results may inform environmental policies and land use planning in São Paulo State, Brazil (e.g. Action Plan for Conservation of Endangered Species; Zoning; Reviews of Environmental Impacts), and it serves as a useful model to guide similar process for other large-carnivore species world-wide.
|
68 |
The ecology and conservation of Juliana’s golden mole (Neamblysomus julianae)Jackson, Craig Ryan 28 July 2008 (has links)
Despite an IUCN conservation status of critically endangered, Juliana’s golden mole (Neamblysomus julianae) has received no ecological research attention to date. The species urgently requires conservation attention, but a poor understanding its biology, ecology and distribution makes effective conservation planning almost impossible. In light of this, a thorough understanding of the habitat requirements for this habitat specific species was needed. Additionally, the cryptic lifestyle of Juliana’s golden mole has resulted in very few distribution records for the species. Little was known about the animals’ daily and seasonal activity patterns or movement patterns. This study revealed that Juliana’s golden mole is range restricted on account of sandy soils that have a uniform particle size distribution. This feature limits substrate compaction, making tunnelling far easier for these small mammals. In comparison to uninhabited areas, occupied habitat had greater vegetation cover provided by trees and shrubs, and this would be expected to provide a cooler and moister microenvironment. The ecological parameters associated with the species presence were then used, in addition to existing GIS data, to predict regions of potentially suitable habitat. This process revealed large potentially inhabitable areas in the northern parts of South Africa. Preliminary ground-truthing has shown the model to be relatively accurate with three potentially new populations having been identified. Contrary to what has been reported in the literature, Juliana’s golden mole does not appear to be strictly nocturnal. Instead, an adaptive pattern of activity was observed, governed by soil temperature. Body temperature was found to fluctuate to some degree with that of the soil temperature, but fluctuations were regulated by behavioural thermoregulation. Seasonal activity is highly correlated with rainfall. Rain moistens the soil making it significantly softer and far easier to tunnel through. Using this and other information acquired through the course of the study, the thesis culminates with an evaluation of conservation concerns and proposed conservation management actions. Copyright / Dissertation (MSc)--University of Pretoria, 2009. / Zoology and Entomology / unrestricted
|
69 |
Management plan for the Cinergy Conservation Area, Naboomspruit, Northern ProvinceGuldemond, Robert Abraham Rene 12 July 2006 (has links)
Please read the abstract in the section 00front of this document / Dissertation (M Inst Agrar (Sustainable Ecological Development))--University of Pretoria, 2006. / Zoology and Entomology / unrestricted
|
70 |
Informing the transition to evidence-based conservation planning for western chimpanzeesHeinicke, Stefanie 13 November 2019 (has links)
Large-scale land-use change across the tropics has led to the decline of animal populations and their habitat. With large investments into mining, hydropower dams and industrial agriculture this trend is likely to continue. Consequently, there is a need for systematic land-use planning to set aside areas for protection and allocate scarce conservation funding effectively. Even though primates are relatively well studied, data-driven systematic planning is still rarely implemented. The overall aim of this dissertation was to investigate population parameters needed for evidence-based conservation planning for the critically endangered western chimpanzee (Pan troglodytes verus) in West Africa. To this end, I compiled density datasets covering the entire geographic range of this taxon from the IUCN SSC A.P.E.S. database and modeled chimpanzee densities as a function of 20 social-ecological variables. I found that western chimpanzees seemingly persist within three social-ecological configurations: rainforests with a low degree of anthropogenic threats, steep areas that are less likely to be developed and are harder to access by humans, and areas with a high prevalence of cultural taboos against hunting chimpanzees. The third configuration of reduced hunting pressure is not yet reflected in commonly implemented conservation interventions, suggesting a need for designing new approaches aimed at reducing the threat of hunting. Based on the modeled density distribution, I estimated that 52,811 (95% CI 17,577-96,564) western chimpanzees remain in West Africa, and identified areas of high conservation value to which conservation interventions should be targeted. These results can be used to inform the expansion of the protected area network in West Africa, to quantify the impact of planned industrial projects on western chimpanzees, and to guide the systematic allocation of conservation funding. In addition, this thesis highlights the unique position of taxon-specific databases of providing access to high-resolution data at the scale needed for conservation planning. Data-driven conservation planning has the potential to enable conservationists to respond more proactively to current and emerging threats, and ultimately improve conservation outcomes.
|
Page generated in 0.1515 seconds