• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 10
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Bivariant Theories of Constructible Functions and Grothendieck

Shoji Yokura, yokura@sci.kagoshima-u.ac.jp 01 September 2000 (has links)
No description available.
2

Verdier--Riemann--Roch for Chern Class and Milnor Class

Shoji Yokura, yokura@sci.kagoshima-u.ac.jp 06 September 2000 (has links)
No description available.
3

BOUNDING THE DECAY OF P-ADIC OSCILLATORY INTEGRALS WITH A CONSTRUCTIBLE AMPLITUDE FUNCTION AND A SUBANALYTIC PHASE FUNCTION

Taghinejad, Hossein January 2016 (has links)
We obtain an upper bound for decay rate of p-adic oscillatory integrals of with analytic phase function and constructible amplitude map. / Thesis / Doctor of Philosophy (PhD)
4

CritÃrio para a construtibilidade de polÃgonos regulares por rÃgua e compasso e nÃmeros construtÃveis / Criterion for constructibility of regular polygons by ruler and compass and constructible numbers

Aislan Sirino Lopes 17 May 2014 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Este trabalho aborda construÃÃes geomÃtricas elementares e de polÃgonos regulares realizadas com rÃgua nÃo graduada e compasso respeitando as regras ou operaÃÃes elementares usadas na Antiguidade pelos gregos. Tais construÃÃes serÃo inicialmente tratadas de uma forma puramente geomÃtrica e, a fim de encontrar um critÃrio que possa determinar a possibilidade de construÃÃo de polÃgonos regulares, passarÃo a ser discutidas por um viÃs algÃbrico. Este tratamento algÃbrico evidenciarà uma relaÃÃo entre a geometria e a Ãlgebra, em especial, a relaÃÃo entre os vÃrtices de um polÃgono regular e as raÃzes de polinÃmios de uma variÃvel com coeficientes racionais. Este tratamento algÃbrico nos levarà naturalmente ao conceito de construtibilidade de nÃmeros e pontos no plano de um corpo, o que exigirà o uso de extensÃes algÃbricas de corpos, e os critÃrios para a construtibi- lidade destes nos levarà a um critÃrio de construtibilidade dos polÃgonos pretendidos. / This work discusses basic geometric constructions and constructions of regular polygons with ruler and compass made respecting the rules or elementary operations used by the ancient Greeks. Such constructs are initially treated in a purely geometric form and, in order to find a criterion that can determine the possibility of construction of regular polygons, will be discussed by an algebraic bias. This algebraic treatment will show a relationship between geometry and algebra, in particular, the relationship between the vertices of a regular polygon and the roots of polynomials in a variable with rational coefficients. This algebraic treatment leads us naturally to the concept of constructibility of numbers and points in a field, which will require the use of algebraic field extensions, and the criteria for the constructibility of these leads to a criterion for constructibility of polygons.
5

Hierarchical Self-Assembly and Substitution Rules

Cruz, Daniel Alejandro 03 July 2019 (has links)
A set of elementary building blocks undergoes self-assembly if local interactions govern how this set forms intricate structures. Self-assembly has been widely observed in nature, ranging from the field of crystallography to the study of viruses and multicellular organisms. A natural question is whether a model of self-assembly can capture the hierarchical growth seen in nature or in other fields of mathematics. In this work, we consider hierarchical growth in substitution rules; informally, a substitution rule describes the iterated process by which the polygons of a given set are individually enlarged and dissected. We develop the Polygonal Two-Handed Assembly Model (p-2HAM) where building blocks, or tiles, are polygons and growth occurs when tiles bind to one another via matching, complementary bonds on adjacent sides; the resulting assemblies can then be used to construct new, larger structures. The p-2HAM is based on a handful of well-studied models, notably the Two-Handed Assembly Model and the polygonal free-body Tile Assembly Model. The primary focus of our work is to provide conditions which are either necessary or sufficient for the ``bordered simulation'' substitution rules. By this, we mean that a border made up of tiles is allowed to form around an assembly which then coordinates how the assembly interacts with other assemblies. In our main result, we provide a construction which gives a sufficient condition for bordered simulation. This condition is presented in graph theoretic terms and considers the adjacency of the polygons in the tilings associated to a given substitution rule. Alongside our results, we consider a collection of over one hundred substitution rules from various sources. We show that only the substitution rules in this collection which satisfy our sufficient condition admit bordered simulation. We conclude by considering open questions related to simulating substitution rules and to hierarchical growth in general.
6

Constructible Numbers Exact Arithmetic

Wennberg, Pimchanok January 2024 (has links)
Constructible numbers are the numbers that can be constructed by using compass and straightedge in a finite sequence. They can be produced from natural numbers using only addition, subtraction, multiplication, division, and square root operations. These operations can be repeated, which creates more complicated expressions for a mathematical object. Calculation by computers only gives an approximation of the exact value, which could lead to a loss of accuracy. An alternative to approximation is exact arithmetic, which is the computation to find an exact value without rounding errors. In this thesis, we have presented a method of computing with the exact value of constructible numbers, specifically the rational numbers and its field extension as well as repeated field extension, through the basic operations. However, we only limit our implementation to the quadratic polynomial and the operations between two numbers of the same extension field. Future work on polynomials with higher degrees and algorithms to include operations with numbers from different extension fields and expression of number as an element of a new extension field remains to be done.
7

A quadratura do círculo e a gênese do número (pi)

Vendemiatti, Aloísio Daniel 24 April 2009 (has links)
Made available in DSpace on 2016-04-27T16:58:52Z (GMT). No. of bitstreams: 1 Aloisio Daniel Vendeniatti.pdf: 1272014 bytes, checksum: 1262d89ac2880970c73eca396d22ca43 (MD5) Previous issue date: 2009-04-24 / Secretaria da Educação do Estado de São Paulo / The goal of this essay is to show aspects of genesis of number π, inherent to the question of squaring the circle, which consists in constructing a square which has the same area as a given circle. This problem does not refer to a practical application of mathematics, but to the theoretic question that involves the distinction between a valid approach and thinking accuracy. The first attempt to squaring the circle dates back in the fifth century before Christ. After that, it was established that this construction should be carried through using a finite number of times, also the non-graduated ruler and the drawing compass itself. In the constructions with ruler and drawing compass we are referring to the first three postulates of Euclides Elements: 1) It´s possible to join two points by a straight line, 2) to expand a straight line until the necessary point, and 3) to draw a circumference around any point and with any radius. These postulates are the base of these constructions, sometimes called euclidean´s constructions. A real number α is constructible, if feasible building a segment of legth α with ruler and drawing compass, since a segment is taken as a unity. We show the idea of translating the geometrical problem of constructions made with ruler and drawing compass to the algebraic language and this allowed us to solve the problem of squaring the circle. We exposed that all constructible numbers are algebraic, over the rational numbers, establishing the impossibility of squaring the circle, with Lindemann´s demonstration, in 1882, of the number π transcendence. This problem has been fascinating people for more than twenty centuries. We tried to supply all mathematical tools needed for this demonstration. Demonstrations play a fundamental role in the development of this essay, which purpose is not only to contribute to the math teacher formation, but also to detail the resolution of the problem of squaring the circle / O objetivo deste trabalho é apresentar aspectos da gênese do número π, inerentes à questão da quadratura do círculo, a qual consiste em construir um quadrado de área igual à área de um círculo de raio r dado. Esse problema não diz respeito a uma aplicação prática da matemática, mas sim a uma questão teórica que envolve uma distinção entre uma boa aproximação e a exatidão do pensamento. O registro da primeira tentativa de se quadrar o círculo remonta a Anaxágoras, no século V a.C. Posteriormente, ficou estabelecido que essa construção deveria ser realizada utilizando-se, um número finito de vezes, a régua não graduada e o compasso. Nas construções com régua e compasso, estamos nos referindo aos três primeiros postulados dos Elementos de Euclides: 1) é possível unir dois pontos por uma reta, 2) prolongar uma linha reta até onde seja necessário e 3) traçar uma circunferência em torno de qualquer ponto e com qualquer raio. Esses postulados são a base dessas construções, muitas vezes chamadas de construções euclidianas. Um número real α é construtível, se for possível "construir com régua e compasso um segmento de comprimento igual a α, a partir de um segmento tomado como unidade". Apresentamos a idéia de traduzir o problema geométrico das construções com régua e compasso para a linguagem algébrica, e isso permitiu solucionar o problema da quadratura do círculo. Expomos que todo número construtível é algébrico sobre os racionais, estabelecendo a impossibilidade de quadrar o círculo com a demonstração de Lindemann, em 1882, da transcendência do número π. Vemos que esse problema fascinou estudiosos por mais de 20 séculos. Procuramos fornecer todas as ferramentas matemáticas necessárias para essa demonstração. As demonstrações desempenham um papel fundamental no desenvolvimento deste trabalho, que tem por finalidade não só contribuir para a formação do professor de matemática, mas também detalhar a resolução do problema da quadratura do círculo
8

Construções geométricas e origami

Bonfim, Marcelo January 2016 (has links)
Orientador: Prof. Dr. Sinuê Dayan Barbero Lodovici / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2016. / Geometry is present in many of our contemporary activities, which allows us to search for more contextualized teaching strategies in order to make the learning process more meaningful to the student. Folding square papers to create origami, seems, to some extent, something simple, seeing that since our childhood, we play folding paper, making boats, balloons or even aircrafts. However, much more than just folding randomly, Origami is based on basic geometry and without realizing it, we work with angles, planes, lines and points, enabling several ways to work with Geometry with this technique inside the classroom, in a playful and interesting way, arising the students¿ curiosity. Thus this thesis aims to present a proposal to approach in a more playful way the fundamental knowledge of Euclidean Geometry through Origami. In this work we broach two of the three classic and insolvable problems of Euclidean geometry using the ruler and the ideal compass, showing some possible elementary frames with only these two instruments. We also mention the constructability of certain numbers using the ruler and the ideal compass. Finally, we discourse about the Japanese technique of Origami, the axioms that substantiate its geometry as well as demonstrate the resolution for two of these insolvable problems: the angle trisection and the duplication of a cube. / A Geometria faz-se presente em várias de nossas atividades contemporâneas, o que nos permite buscar estratégias de ensino mais contextualizadas, de maneira que a aprendizagem seja mais significativa ao aluno. Fazer dobraduras em papel parece, até certo ponto, algo simples, visto que, desde a nossa infância brincamos com a dobradura em papel, seja fazendo barcos, balões ou aviões. Porém, muito além do ato de apenas dobrar de maneira qualquer, o Origami é fundamentado em conhecimentos básicos da Geometria e sem percebermos, trabalhamos com ângulos, planos, retas e pontos, possibilitando diversas formas de se trabalhar a Geometria com esta técnica em sala de aula, de maneira lúdica e interessante, despertando a curiosidade do aluno. Desta forma, esta dissertação busca apresentar uma proposta para abordar de maneira mais lúdica os conhecimentos fundamentais da Geometria Euclidiana através do Origami. Neste presente trabalho abordamos sobre dois dos três problemas clássicos e insolúveis da Geometria Euclidiana utilizando a régua e o compasso ideais, abordando algumas construções elementares possíveis com apenas esses dois intrumentos. Abordamos também sobre a construtibilidade de determinados números utilizando a régua e o compasso ideais. Por fim, discorremos sobre a técnica japonesa do Origami, os axiomas que fundamentam sua geometria, bem como a demonstração da resolução de dois desses problemas insolúveis: a trissecção do ângulo e a duplicação do cubo.
9

As construções geométricas via geometria dinâmica do software régua e compasso / The geometric constructions into dynamic geometry software ruler and compass

Silva, Emerson José da 21 August 2014 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2015-01-27T14:46:39Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Emerson José da Silva - 2014.pdf: 7690015 bytes, checksum: 913769b0dd5913e4688da0ec1491b760 (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-01-28T12:58:40Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Emerson José da Silva - 2014.pdf: 7690015 bytes, checksum: 913769b0dd5913e4688da0ec1491b760 (MD5) / Made available in DSpace on 2015-01-28T12:58:40Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Emerson José da Silva - 2014.pdf: 7690015 bytes, checksum: 913769b0dd5913e4688da0ec1491b760 (MD5) Previous issue date: 2014-08-21 / In this work we revisit the subject Geometric Constructions into ruler and compass, using the dynamic geometry software 'Ruler and Compass' as an auxiliary tool in the teaching and learning of geometry, building examples and suggestions for activities with the software. Brought to the fore the possibility of building into ruler and compass, solutions to several problems that can be presented as algebraic expressions. Yet addressed the possibility of constructing a number, using only ruler and compass and discuss the famous and historical problems of geometrical construction: doubling the cube, squaring the circle and the trisection of the angle. We add appendices which present other possible constructions and also bring suggestions for activities with ruler and compass software. Keywords / Neste trabalho revisitamos o assunto Construções Geométricas via régua e compasso, utilizando o software de Geometria Dinâmica ‘Régua e Compasso’ como uma ferramenta auxiliar no ensino e aprendizagem de Geometria, construindo exemplos e sugestões de atividades com o software. Trouxemos à tona a possibilidade da construção, via régua e compasso, de soluções para vários problemas que podem ser apresentados por expressões algébricas. Abordamos ainda a possibilidade da construção de um número, utilizando-se apenas a régua e o compasso e discutimos os célebres e históricos problemas de construção geométrica: duplicação do cubo, quadratura do círculo e trissecção do ângulo. Acrescemos ainda apêndices onde apresentamos outros tipos de construções possíveis e também trazemos sugestões de atividades com o software ‘Régua e Compasso’.
10

[en] CONSTRUCTIBLE POLYGONS IN RULER AND COMPASS: A PRESENTATION FOR MIDDLE AND HIGH SCHOOL TEACHERS / [pt] POLÍGONOS CONSTRUTÍVEIS POR RÉGUA E COMPASSO: UMA APRESENTAÇÃO PARA PROFESSORES DA EDUCAÇÃO BÁSICA

KELISSON FERREIRA DE LIMA 12 February 2016 (has links)
[pt] O objetivo deste trabalho é trazer à tona conceitos importantes da geometria no plano euclidiano sob o título de construções geométricas, cada vez mais esquecidos nos currículos escolares brasileiros. Nossa primeira ideia é mostrar a dificuldade que professores do ensino médio poderão encontrar ao tentar descobrir quais conceitos validam suas práticas já que os argumentos que validam a possibilidade ou a impossibilidade de algumas construções geométricas residem numa álgebra abstrata de difícil compreensão e domínio por parte dos professores, sobretudo aqueles que não cursaram disciplinas mais avançadas em matemática. Vamos comentar sobre os principais problemas da antiguidade que motivaram os matemáticos às descobertas de novas propriedades, apresentar tais construções geométricas e apresentar uma descrição algébrica das construções geométricas. A ideia é que através da álgebra abstrata podemos obter argumentos que validem a possibilidade e impossibilidade de tais construções e assim aumentar a cultura matemática do professor do ensino médio e não transformá-lo num expert no assunto. / [en] The main purpose of this work is to rescue the important concepts in geometric constructions. Concepts that are being progressively forgotten by Brazilian curriculums in schools. First, we want to present the difficulties that high school teachers might face when they will try to formalize concepts like the possibility or not to construct some figures in the Euclidean plane, especially those who have not studied advanced math courses at undergraduation. We comment on the main problems of antiquity that led mathematicians to new discoveries properties, we present geometric constructions as well as an algebraic description of these geometric constructions. The idea is that through abstract algebra we can present arguments about the possibility or impossibility of such constructions. In this work, we will comment that abstract algebra will help teachers to validate some arguments that involves the possibility or not to construct some figures as well as to enlarge high schools teachers culture, not trying to make them experts in the subject.

Page generated in 0.0628 seconds