Spelling suggestions: "subject:"control delay"" "subject:"control relay""
1 |
A study of control systems containing fixed and variable time-delaysKerschberg, Larry, January 1966 (has links)
Thesis (M.S.)--University of Wisconsin--Madison, 1966. / eContent provider-neutral record in process. Description based on print version record. Bibliography: l. 86-88.
|
2 |
Travel Time Estimation on Arterial StreetsWang, Heng 30 December 2004 (has links)
Estimation of real-time travel times on arterial streets has been a challenging task due to the intersection control delay as well as bottleneck delay from the downstream link. Therefore, few transportation professionals have conducted research at utilizing the dynamic flow methods to estimate travel times on arterial street networks.
This thesis is to develop dynamic flow algorithms that estimates the real-time travel time on an arterial street network by utilizing the traffic information obtained from detectors. A modified method to the one adopted in HCM2000 in computing the intersection control delay is developed and utilized to estimate the real-time travel time for a short-time interval update under non-incident and incident situations. Simulation model is developed in CORSIM to validate developed algorithms under different traffic situations. / Master of Science
|
3 |
Comparative Analysis of Multiple Data Sources for Travel Time and Delay MeasurementCooke, Payton, Cooke, Payton January 2016 (has links)
Arterial performance measurement is an essential tool for both researchers and practitioners, guiding decisions on traffic management, future improvements, and public information. Link travel time and intersection control delay are two primary performance measures that are used to evaluate arterial level of service. Despite recent technological advancements, collecting travel time and intersection delay data can be a time-consuming and complicated process. Limited budgets, numerous available technologies, a rapidly changing field, and other challenges make performance measurement and comparison of data sources difficult. Three common data collection sources (probe vehicles, Bluetooth media access control readers, and manual queue length counts) are often used for performance measurement and validation of new data methods. Comparing these and other data sources is important as agencies and researchers collect arterial performance data. This study provides a methodology for comparing data sources, using statistical tests and linear correlation to compare methods and identify strengths and weaknesses. Additionally, this study examines data normality as an issue that is seldom considered, yet can affect the performance of statistical tests. These comparisons can provide insight into the selection of a particular data source for use in the field or for research. Data collected along Grant Road in Tucson, Arizona, was used as a case study to evaluate the methodology and the data sources. For evaluating travel time, GPS probe vehicle and Bluetooth sources produced similar results. Bluetooth can provide a greater volume of data more easily in addition to samples large enough for more rigorous statistical evaluation, but probe vehicles are more versatile and provide higher resolution data. For evaluating intersection delay, probe vehicle and queue count methods did not always produce similar results.
|
4 |
A Static Traffic Assignment Model Combined with an Artificial Neural Network Delay ModelDing, Zhen 21 November 2007 (has links)
As traffic congestion continues to worsen in large urban areas, solutions are urgently sought. However, transportation planning models, which estimate traffic volumes on transportation network links, are often unable to realistically consider travel time delays at intersections. Introducing signal controls in models often result in significant and unstable changes in network attributes, which, in turn, leads to instability of models. Ignoring the effect of delays at intersections makes the model output inaccurate and unable to predict travel time. To represent traffic conditions in a network more accurately, planning models should be capable of arriving at a network solution based on travel costs that are consistent with the intersection delays due to signal controls. This research attempts to achieve this goal by optimizing signal controls and estimating intersection delays accordingly, which are then used in traffic assignment. Simultaneous optimization of traffic routing and signal controls has not been accomplished in real-world applications of traffic assignment. To this end, a delay model dealing with five major types of intersections has been developed using artificial neural networks (ANNs). An ANN architecture consists of interconnecting artificial neurons. The architecture may either be used to gain an understanding of biological neural networks, or for solving artificial intelligence problems without necessarily creating a model of a real biological system. The ANN delay model has been trained using extensive simulations based on TRANSYT-7F signal optimizations. The delay estimates by the ANN delay model have percentage root-mean-squared errors (%RMSE) that are less than 25.6%, which is satisfactory for planning purposes. Larger prediction errors are typically associated with severely oversaturated conditions. A combined system has also been developed that includes the artificial neural network (ANN) delay estimating model and a user-equilibrium (UE) traffic assignment model. The combined system employs the Frank-Wolfe method to achieve a convergent solution. Because the ANN delay model provides no derivatives of the delay function, a Mesh Adaptive Direct Search (MADS) method is applied to assist in and expedite the iterative process of the Frank-Wolfe method. The performance of the combined system confirms that the convergence of the solution is achieved, although the global optimum may not be guaranteed.
|
5 |
Evaluating the Transit Signal Priority Impacts along the U.S. 1 Corridor in Northern VerginiaKamdar, Vaibhavi Killol 12 January 2005 (has links)
Heavy traffic volumes in peak hours accompanied by closely located signalized intersections and nearside bus stops on U.S. 1, result in congestion and traffic delays that bus transit may be able to alleviate to some extent. The capital investment and operating costs of other transit solutions such as "Bus Rapid Transit" and "Heavy Rail Transit" projects were found to be cost prohibitive compared to bus transit signal priority (TSP) options. Successful implementation of a limited TSP pilot project led local authorities to conclude that TSP should be extended to the full length of the Fairfax Connector bus routes on U.S. 1.
This research focused on testing the impacts of a ten second green extension priority strategy for all the northbound transit buses in the morning peak period at twenty-six signalized intersections along U.S. 1. A micro simulation model VISSIM 3.7 was used to analyze the impacts of TSP.
The simulation analysis indicates that the Fairfax Connector buses might benefit from the green extension strategy. Overall, improvements of up to 4% for transit travel time savings and 5-13% reduction in control delay for transit vehicles were observed. Considering all side street traffic, the total increase in maximum queue length might be up to 1.23%.
Future research possibilities proposed include the evaluation of different priority strategies such as an early green, red truncation and queue jumps. Impacts of using a dedicated lane for transit buses along with TSP can also be evaluated. Conditional transit signal priority may also include bus occupancy levels and bus latenesses. / Master of Science
|
6 |
Distributed control of electric drives via EhernetSamaranayake, Lilantha January 2003 (has links)
<p>This report presents the work carried out aiming towardsdistributed control of electric drives through a networkcommunication medium with temporal constraints, i.e, Ethernet.A general analysis on time delayed systems is carried out,using state space representation of systems in the discretetime domain. The effect of input time delays is identified andis used in the preceding controller designs. The main hardwareapplication focused in this study is a Brushless DC servomotor, whose speed control loop is closed via a 10 MbpsSwitched Ethernet network. The speed control loop, which isapproximately a decade slower than the current control loop, isopened and interfaced to the network at the sensor/actuatornode. It is closed at the speed controller end at another nodein the same local area network (LAN) forming a distributedcontrol system (DCS).</p><p>The Proportional Integral (PI) classical controller designtechnique with ample changes in parameter tuning suitable fortime delayed systems is used. Then the standard Smith Predictoris tested, modified with the algebraic design techniqueCoefficient Diagram Method (CDM), which increases the systemdegrees of freedom. Constant control delay is assumed in thelatter designs despite the slight stochastic nature in thetiming data observations. Hence the poor transient performanceof the system is the price for the robustness inherited to thespeed controllers at the design stage. The controllability andobservability of the DCS may be lost, depending on the range inwhich the control delay is varying. However a state feedbackcontroller deploying on-line delay data, obtained by means ofsynchronizing the sensor node and controller node systemclocks, results in an effective compensation scheme for thenetwork induced delays. Hence the full state feedbackcontroller makes he distributed system transient performanceacceptable for servo applications with the help of poleplacement controller design.</p><p>Further, speed synchronizing controllers have been designedsuch that a speed fluctuation caused by a mechanical loadtorque disturbance on one motor is followed effectively by anyother specified motor in the distributed control network with aminimum tracking or synchronizing error. This type ofperformance is often demanded in many industrial applicationssuch as printing, paper, bagging, pick and place and materialcutting.</p><p><b>Keywords:</b>Brushless DC Motor, Control Delay, DistributedMotion Control Systems, Proportional Integral Controller, SmithPredictor, Speed Synchronization, State Feedback Controller,Stochastic Systems, Switched-Ethernet, Synchronizing Error,Time Delayed Systems, Tracking Error</p>
|
7 |
Distributed control of electric drives via EhernetSamaranayake, Lilantha January 2003 (has links)
This report presents the work carried out aiming towardsdistributed control of electric drives through a networkcommunication medium with temporal constraints, i.e, Ethernet.A general analysis on time delayed systems is carried out,using state space representation of systems in the discretetime domain. The effect of input time delays is identified andis used in the preceding controller designs. The main hardwareapplication focused in this study is a Brushless DC servomotor, whose speed control loop is closed via a 10 MbpsSwitched Ethernet network. The speed control loop, which isapproximately a decade slower than the current control loop, isopened and interfaced to the network at the sensor/actuatornode. It is closed at the speed controller end at another nodein the same local area network (LAN) forming a distributedcontrol system (DCS). The Proportional Integral (PI) classical controller designtechnique with ample changes in parameter tuning suitable fortime delayed systems is used. Then the standard Smith Predictoris tested, modified with the algebraic design techniqueCoefficient Diagram Method (CDM), which increases the systemdegrees of freedom. Constant control delay is assumed in thelatter designs despite the slight stochastic nature in thetiming data observations. Hence the poor transient performanceof the system is the price for the robustness inherited to thespeed controllers at the design stage. The controllability andobservability of the DCS may be lost, depending on the range inwhich the control delay is varying. However a state feedbackcontroller deploying on-line delay data, obtained by means ofsynchronizing the sensor node and controller node systemclocks, results in an effective compensation scheme for thenetwork induced delays. Hence the full state feedbackcontroller makes he distributed system transient performanceacceptable for servo applications with the help of poleplacement controller design. Further, speed synchronizing controllers have been designedsuch that a speed fluctuation caused by a mechanical loadtorque disturbance on one motor is followed effectively by anyother specified motor in the distributed control network with aminimum tracking or synchronizing error. This type ofperformance is often demanded in many industrial applicationssuch as printing, paper, bagging, pick and place and materialcutting. <b>Keywords:</b>Brushless DC Motor, Control Delay, DistributedMotion Control Systems, Proportional Integral Controller, SmithPredictor, Speed Synchronization, State Feedback Controller,Stochastic Systems, Switched-Ethernet, Synchronizing Error,Time Delayed Systems, Tracking Error / NR 20140805
|
8 |
Microscopic Control Delay Modeling at Signalized Arterials Using Bluetooth TechnologyRajasekhar, Lakshmi 10 January 2012 (has links)
Real-time control delay estimation is an important performance measure for any intersection to improve the signal timing plans dynamically in real-time and hence improve the overall system performance. Control delay estimates helps to determine the level-of-service (LOS) characteristics of various approaches at an intersection and takes into account deceleration delay, stopped delay and acceleration delay. All kinds of traffic delay calculation especially control delay calculation has always been complicated and laborious as there never existed a low-cost direct method to find them in real-time from the field. A recent validated technology called Bluetooth Median Access Control (MAC) ID matching traffic data collection technology seems to hold promise for continuous and cost-effective traffic data collection. Bluetooth traffic data synchronized with vehicle trajectory plot generated from GPS probe vehicle runs has been used to develop control delay models which has a potential to predict the control delays in real-time based on Bluetooth detection error parameters in field. Incorporating control delay estimates in real-time traffic control management would result in significant improvement in overall system performance. / Master of Science
|
9 |
Effects of U-Turns on Capacity at Signalized Intersections And Simulation of U-Turning Movement by SynchroWang, Xiaodong 28 March 2008 (has links)
The primary objective of this study is to evaluate the operational effects of U-turn movement at signalized intersections. More specifically, the research objectives include the following parts: To identify the factors affecting the operational performance of U-turning vehicles. In this case, we are particularly interested in the U-turn speeds of U-turning vehicles. To evaluate the impacts of U-turns on capacity of signalized intersections, and To simulate U-turn movement at signalized intersections using Synchro and validate the simulation results.
To achieve the research objectives, extensive field data collection work was conducted at sixteen selected sites at Tampa Bay area of Florida. The data collected in the field include: U-turning speed Left turning speed Turning radius Queue discharge time Control delay Hourly traffic volume, and Percentage of U- turning vehicles in left turn lane.
Based on the collected field data, a linear regression model was developed to identify the factors affecting the turning speeds of U-turning vehicles at signalized intersections. The model shows the turning speed is significantly impacted by the turning radius and the speed of U-turning vehicles increases with the increase of turning radius. On the basis of field data field data collection, a regression model was developed to estimate the relationship between the average queue discharge time for each turning vehicle and the various percentages of U-turning vehicles in the left turn traffic stream. Adjustment factors for various percentages of U-turning vehicles were also developed by using the regression model. The adjustment factors developed in this study can be directly used to estimate the capacity reduction due to the presence of various percentages of U-turning vehicles at a signalized intersection.
The developed adjustment factors were used to improve the simulation of U-turn movement at signalized intersection by using Synchro. The simulation model was calibrated and validated by field data. It was found that using the developed adjustment factors will greatly improve the accuracy of the simulation results for U-turn movement.
|
10 |
Ferrugem asiática da soja: relações entre o atraso do controle químico, rendimento, severidade e área foliar sadia de soja (Glycine max L. Merril) / Asian soybean rust: relationship between delay of chemical control, yield, severity and healthy leaf area of soybean (Glycine max L. Merril)Calaça, Helen Alves 25 January 2008 (has links)
O controle da ferrugem asiática é altamente dependente do tratamento com fungicidas. A decisão do momento correto da aplicação é fundamental para a eficiência do tratamento, visto que atrasos na efetuação do controle podem torná-lo tão ineficaz quanto à ausência de aplicações. O dano provocado pela ferrugem asiática é decorrente da redução da área foliar, devido à destruição do tecido vegetal e desfolha precoce. Tendo em vista a influência que o atraso no controle tem sobre a ferrugem asiática, e esta sobre a folhagem das plantas de soja, o dano pode ser melhor compreendido com o uso de variáveis que captem modificações na área foliar do hospedeiro. Com os objetivos de avaliar o efeito do atraso no controle da ferrugem asiática sobre o rendimento e os componentes do rendimento, a duração (HAD), a absorção da área foliar sadia (HAA) de plantas de soja e sobre a severidade da doença e examinar as relações entre o rendimento de soja com a duração, absorção da área foliar sadia e severidade da ferrugem asiática, foram conduzidos cinco experimentos no Centro de Pesquisa e Desenvolvimento Agrícola da Arysta LifeScience, em Pereiras-SP. Os experimentos envolveram um tratamento preventivo e tratamentos que corresponderam a atrasos crescentes na efetuação do controle químico. As relações entre os parâmetros citados acima foram avaliadas por meio de testes de comparação de médias (LSD) e regressões lineares e não lineares (p<=0,05). Os resultados mostraram que nas situações em que o início da ferrugem asiática da soja ocorre próximo à fase reprodutiva, o rendimento cai à taxa de -31 kg ha-1 a -15 kg ha-1 por cada dia de atraso no controle, sendo o dano maior nos estádios mais jovens e menor nos estádios mais avançados. Na relação entre o atraso no controle da ferrugem asiática da soja e HAA, 10 MJ m-2 deixam de ser absorvidos por cada dia de atraso no controle. Na relação entre o atraso no controle da ferrugem asiática da soja e HAD, a duração da área foliar sadia diminui 2,4 a 1,4 dias por cada dia em que o controle é atrasado. Na relação entre o rendimento de soja e HAA, são ganhos 2 kg ha-1 para cada MJ m-2 absorvido pela área foliar sadia. Na relação entre o rendimento de soja e HAD, são ganhos de 13 a 9 kg ha-1 para cada dia de duração da área foliar sadia. A relação entre atraso no controle da ferrugem asiática da soja e severidade da doença é de 0,25% ponto percentual para cada dia de atraso no controle. A relação entre o rendimento de soja e severidade da ferrugem asiática é de -36 kg ha-1 por cada ponto percentual de severidade. A variável que melhor se relaciona com o rendimento de soja é a absorção da área foliar sadia (HAA). Tanto HAA quanto HAD são variáveis melhores do que a severidade para serem usadas na quantificação de danos provocados pela ferrugem asiática na soja. Nas situações em que o início da doença ocorre próximo à fase reprodutiva, atrasos no controle da ferrugem asiática superiores a 28 dias apresentam o mesmo resultado que a ausência de controle. Não há redução no rendimento de soja se o início da ferrugem asiática ocorrer a partir do estádio R5. / The control of the asian soybean rust is highly dependent of fungicides treatment. The decision of the correct moment of application is critical for the efficiency of the treatment, since delays in the control can become it so inefficacious as the absence of applications. The damage caused by asian soybean rust is decurrent of the reduction of the leaf area, due to vegetal tissue destruction and early defoliation. In view, the influence that the control delay has on the asian rust, and this on the foliage of the soybean plants, the yield loss can be better understood with the use of variable that catch modifications in the leaf area of the host plant. With the objectives to evaluate the effect of the delay in the asian soybean control on the yield and the yield components, the duration (HAD) and absorption of the healthy leaf area (HAA) of soybean plants and on the disease severity, and to examine the relationship between the soybean yield with the healthy leaf area duration, healthy leaf area absorption and asian soybean rust severity, were conducted five field experiments in Agricultural Research and Development Center of the Arysta LifeScience, in Pereiras-SP. The experiments had involved a preventive treatment and treatments that had corresponded the increasing delays in the chemical control. The relationship between the cited parameters above had been evaluated by averages comparison test (LSD) and linear and non linear regressions (p<=0,05). The results had shown that in the situations where the beginning of the asian soybean rust occurs next to the reproductive phase, the yield fall -31 kg ha-1 to -15 kg ha-1 per each day of control delay, being the loss bigger in youngest stadiums and lesser in oldier stadiums. In the relationship between control delay of the asian soybean rust and HAA, 10MJ m-2 does not absorbed per each day of control delay. In the relationship of the control delay of the asian soybean rust and HAD, the duration of the healthy leaf area reduced 2,4 to 1,4 days per each day where the control is delayed. In the relationship between soybean yield and HAA, were obtained 2 kg ha-1 for each MJ m-2 absorbed by the healthy leaf area. In the relationship between soybean yield and HAD, were obtained 9 to 13 kg ha-1 for each day of healthy leaf area duration. The relationship between control delay of the asian soybean rust and disease severity was of 0,25% percentile point for each day of delay in the control. The relationship between soybean yield and severity of the asian soybean rust were of -36 kg ha-1 for each percentile point of severity. The variable that better becomes related with the yield soybean was the healthy leaf area absorption (HAA). Even HAA as HAD are better variables than severity to be used in the yield losses quantification of the asian soybean rust. In the situations that the beginning of the disease occurs next to reproductive phase, control delay of asian soybean rust higher than 28 days show the same result that the control absence. It does not have reduction in the soybean yield if the beginning of the asian soybean rust occurs after the R5 stadium.
|
Page generated in 0.0669 seconds