Spelling suggestions: "subject:"converters"" "subject:"konverters""
31 |
20-stage pipelined ADC with radix-based calibrationYun, Chong Kyu 07 November 2002 (has links)
A radix-based calibration technique was previously proposed with a two-stage
algorithmic analog-to-digital converter (ADC). The objective of this work is to verify
the capability of radix-based calibration for a true multi-stage ADC. In order to prove
the idea, a single bit-per-stage, 20-stage pipelined ADC is designed in a 0.35-��m
CMOS technology. The system is fully differential and requires two non-overlapping
clock phases to operate. The implementation of the calibration technique in the
pipelined ADC is investigated. Simulation results show that 109dB of SNDR,
112dB of THD, and 116dB of SFDR can be achieved, which indicates the overall
accuracy of the ADC is 18 bits. / Graduation date: 2003
|
32 |
Oversampling digital-to-analog convertersShu, Shaofeng 07 June 1995 (has links)
Oversampling and noise-shaping methods for digital-to-analog (D/A) conversion have
been widely accepted as methods of choice in high performance data conversion
applications. In this thesis, the fundamentals of D/A conversion and oversampling D/A
conversion were discussed, along with the detailed analysis and comparison of the reported
state-of-the-art oversampling D/A converters.
Conventional oversampling D/A converters use 1-bit internal D/A conversion. Complex
analog filters and/or large oversampling ratios are usually needed in these 1-bit
oversampling D/A converters. Using multi-bit internal D/A conversion, the analog filter
can be much simpler and the oversampling ratio can be greatly reduced. However, the
linearity of the multi-bit D/A converter has to be at least the same as that required by the
overall system.
The dual-quantization technique developed in the course of this research provides a good
alternative for implementing multi-bit oversampling D/A converters. The system uses two
internal D/A converters; one is single-bit and the other is multi-bit. The single-bit D/A
converter is used in a path called the signal path while the multi-bit D/A converter is used
in a path called the correction path. Since the multi-bit D/A converter is not directly placed
in the signal path, its nonlinearity error can be noise shaped by an analog differentiator so
that the in-band noise contribution from the nonlinearity error is very small at the system
output, greatly reducing the linearity requirement on the multi-bit internal D/A converter.
An experimental implementation of an oversampling D/A converter using the
dual-quantization technique was carried out to verify the concept. Despite about 10 dB
higher noise than expected and the high second-order harmonic distortion due to practical
problems in the implementation, the implemented system showed that the corrected output
had more than 20 dB improvement over the uncorrected output in both signal-to-noise ratio
and dynamic range, demonstrating the validity of the concept. / Graduation date: 1996
|
33 |
Current-mode flash analog-to-digital converterMaleki, Mohammad 30 November 1992 (has links)
This thesis describes the development of a flash analog-to-digital converter based on
current-mode technique. The advantages of current -mode technique are higher speed,
smaller chip area, and simple division of reference current based on current mirror. A
current-mode comparator is designed consisting of a cascode current mirror and a
current sense amplifier used as a latch. The new method allows effective and simple
high-speed A/D conversion where the input is a current signal and the output of the
latch is a digital voltage signal. A four-bit flash analog-to-digital converter, using
current sense amplifier comparator is designed and simulated in 1-micron CMOS
technology. Simulation results show that for ADC with resolution below six-bit, this
technique offers a comparable accuracy with the existing voltage-mode methods at
much higher speed. / Graduation date: 1993
|
34 |
Analysis and design of oversampled digital-to-analog convertersXu, Xiaofeng 12 March 1992 (has links)
Oversampled data converters are becoming increasingly popular
for high-precision data conversion. There have been many
publications on oversampled analog-to-digital (A/D) converters but
relatively few on oversampled digital-to-analog (D/A) converters.
In this thesis, issues concerning the analysis and design of the
oversampled D/A converters are addressed. Simulation tools and
analytical methods are discussed. A novel dual-quantization
technique for achieving high-precision D/A conversion is
proposed. A design example is presented to demonstrate that in
many aspects the proposed technique is superior to existing
techniques.
The thesis is divided into four chapters. Chapter 1 is an
introduction to the general concepts of Nyquist-rate and
oversampled data converters. Chapter 2 describes some building
blocks to be used in oversampled D/A converters and gives both
theoretical and simulation methods for analzying them. Chapter 3
describes the proposed dual-quantization D/A converters,
including the structure, the associated design issues and an
example to verify the validity of this technique. Finally, Chapter 4
summarizes the properties of the simulated system and proposes
some future research work. / Graduation date: 1992
|
35 |
A New Family of Transformerless Modular DC-DC Converters for High Power ApplicationsHagar, Abdelrahman 30 August 2011 (has links)
This thesis presents a new family of converters for high power interconnection of dc buses with different voltage levels. Proposed converters achieve high voltage dc-dc conversion without an intermediate ac conversion stage. This function is implemented without series connection of active switches, or the use of isolation transformers. The salient features of proposed converters are (i) design and construction simplicity, (ii) low switching losses through soft turn-on and soft turn-off, (iii) single stage dc-dc conversion without high-current chopping, (iv) modular structure, (v) equal voltage sharing among the converter modules.
Three converter circuits are investigated. The first performs unidirectional power transfer from a dc bus with higher voltage to a dc bus with lower voltage. The second performs unidirectional power transfer from a dc bus with lower voltage to a dc bus with higher voltage. Both converters are suitable for interconnecting single pole dc buses with same polarity, or double pole dc buses. A third converter is also presented which performs the function of either the first or the second converter with polarity reversal. The third converter is suitable for interconnecting single pole dc buses with different polarities, or double pole dc buses. By hybrid integration of the proposed three converters, the thesis also investigates other topologies for bidirectional power transfer between two dc buses.
Proposed converters operate only in discontinuous conduction mode and exhibit soft switching operation for the active and passive switches. A common feature between the proposed converters is the self current turn-off for the active switches at zero voltage. This allows the use of thyristors as active switches alleviating their reverse recovery losses. For each converter topology, the structure is presented, its operation principle is explained and a complete set of design equations are derived. Comparisons are performed on high-power and high-voltage design examples. The merits and limitations of each converter are concluded. Practical considerations regarding components selection, loss analysis, filter design and the non-idealities of the circuits are studied. Experimental implementation of scaled-down laboratory prototypes is presented to provide a proof of concept and validate the operation principle of the proposed converter topologies.
|
36 |
A New Family of Transformerless Modular DC-DC Converters for High Power ApplicationsHagar, Abdelrahman 30 August 2011 (has links)
This thesis presents a new family of converters for high power interconnection of dc buses with different voltage levels. Proposed converters achieve high voltage dc-dc conversion without an intermediate ac conversion stage. This function is implemented without series connection of active switches, or the use of isolation transformers. The salient features of proposed converters are (i) design and construction simplicity, (ii) low switching losses through soft turn-on and soft turn-off, (iii) single stage dc-dc conversion without high-current chopping, (iv) modular structure, (v) equal voltage sharing among the converter modules.
Three converter circuits are investigated. The first performs unidirectional power transfer from a dc bus with higher voltage to a dc bus with lower voltage. The second performs unidirectional power transfer from a dc bus with lower voltage to a dc bus with higher voltage. Both converters are suitable for interconnecting single pole dc buses with same polarity, or double pole dc buses. A third converter is also presented which performs the function of either the first or the second converter with polarity reversal. The third converter is suitable for interconnecting single pole dc buses with different polarities, or double pole dc buses. By hybrid integration of the proposed three converters, the thesis also investigates other topologies for bidirectional power transfer between two dc buses.
Proposed converters operate only in discontinuous conduction mode and exhibit soft switching operation for the active and passive switches. A common feature between the proposed converters is the self current turn-off for the active switches at zero voltage. This allows the use of thyristors as active switches alleviating their reverse recovery losses. For each converter topology, the structure is presented, its operation principle is explained and a complete set of design equations are derived. Comparisons are performed on high-power and high-voltage design examples. The merits and limitations of each converter are concluded. Practical considerations regarding components selection, loss analysis, filter design and the non-idealities of the circuits are studied. Experimental implementation of scaled-down laboratory prototypes is presented to provide a proof of concept and validate the operation principle of the proposed converter topologies.
|
37 |
A subranging analog to digital converter using four bit pipeplinePress, Stephen E. 26 January 1993 (has links)
This thesis presents the design of a 10 bit Analog to
Digital Converter which consists of a 6 bit flash followed
by a 4 bit pipeline architecture. The total system is
described and the 4 bit pipeline is implemented on a bipolar
process.
The objective of this research is to provide an
alternative approach to high speed ADC designs and to
implement a pipeline ADC which samples at greater speeds
than those achieved with presently existing CMOS pipeline
designs.
This paper presents the complete architecture, the cell
design and simulated performance for each block in the
pipeline, and the measured results for the four bit pipeline
implementation. / Graduation date: 1993
|
38 |
Corrosion of basic refactories in non-ferrous convertersLo, Wai Man 05 1900 (has links)
In the present study, the corrosion behaviour of several magnesia-chrome (MC) and
magnesia-alumina spinel (MA) bricks against fayalite type slags was investigated and the
role of the spinel phases was highlighted. The experimental results revealed that the
corrosion resistance of the MC bricks was superior to the MA bricks against KIVCET slags
in static and dynamic conditions. As a result of the interaction between MgO from MC
bricks and the slag, a modified forsterite phase (Mg, Fe, Zn, Ca) ���SiO��� was formed, which
destroyed the precipitated complex spinel bonds at the grain boundaries of periclase and
magnesia-chromia spinel. Furthermore, both MgO and MgO-MgAl���O��� spinel in the MA
brick dissolved into the slag, which resulted in modified forsterite phases of (Mg, Fe, Zn,
Ca)���SiO��� and (Mg, Fe, Zn)(Fe, Al)���0��� complex spinels, respectively. In addition, the
accretion formation in the KIVCET furnace was investigated through solubility experiments
of Cr���0��� in the KIVCET slag with various amounts of lead, which revealed that the net
contribution of Cr���03 to the spinel formation is the highest in the barren (no Pb) slag,
followed by high-lead (11% Pb) and it is the lowest for the low-lead (6% Pb) slag. The
amount of spinel solid solution increased consistently with increasing Cr���0��� dissolved and
the PbO existent in the slag.
From examinations of several used bricks from the tuyere area of a Peirce Smith nickel
converter, it was found that the corrosion is due to the interaction of the partially oxidized
matte penetrating deep into the brick and the magnesia grains forming (Mg, Fe, Ni, Co) XOy
spinels. Analyses of brick samples used in the KIVCET Electric Furnace roof identified
deep reaching sulphation, which weakened the bonding phase between coarse magnesia
grains. In the Bottom Blown Oxygen Converter, a highly aggressive lead and bismuth oxide
rich slag penetrated deep into the brick, which destroyed the grain boundaries, causing the
refractory to be easily eroded at the refractory-slag interface.
Our studies concluded that the spinel phases, either as magnesium chromate, magnesium
aluminate or complex spinel [(Mg, Fe)(Cr, Al, Fe) ���O���], enhanced the corrosion resistance of
a basic refractory to fayalite type slags from the non-ferrous smelting and converting
furnaces.
|
39 |
A 16 Bit 500KSps low power successive approximation analog to digital converterYang, Kun. January 2009 (has links) (PDF)
Thesis (M.S. in electrical engineering)--Washington State University, December 2009. / Title from PDF title page (viewed on Feb. 9, 2010). "School of Electrical Engineering and Computer Science." Includes bibliographical references (p. 42-43).
|
40 |
DC-DC power conversion with galvanic isolation /Zengel, Jason A. January 2003 (has links) (PDF)
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, June 2003. / Thesis advisor(s): Robert W. Ashton, Todd R. Weatherford. Includes bibliographical references (p. 83-84). Also available online.
|
Page generated in 0.0649 seconds