• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 266
  • 35
  • 14
  • 10
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 388
  • 388
  • 388
  • 249
  • 166
  • 160
  • 141
  • 87
  • 85
  • 81
  • 79
  • 77
  • 70
  • 68
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Vliv barevných modelů na chování konvolučních neuronových sítí / Impact of color models on performance of convolutional neural networks

Šimunský, Martin January 2020 (has links)
Current knowledge about impact of colour models on performance of convolutional neural network is investigated in the first part of this thesis. The experiment based on obtained knowledge is conducted in the second part. Six colour models HSV, CIE 1931 XYZ, CIE 1976 L*a*b*, YIQ a YCbCr and deep convolutional neural network ResNet-101 are used. RGB colour model achieved the highest classification accuracy, whereas HSV color model has the lowest accuracy in this experiment.
322

Analýza zvukových nahrávek pomocí hlubokého učení / Deep learning based sound records analysis

Kramář, Denis January 2021 (has links)
This master thesis deals with the problem of audio-classification of the chainsaw logging sound in natural environment using mainly convolutional neural networks. First, a theory of grafical representation of audio signal is discussed. Following part is devoted to the machine learning area. In third chapter, some of present works dealing with this problematics are given. Within the practical part, used dataset and tested neural networks are presented. Final resultes are compared by achieved accuracy and by ROC curves. The robustness of the presented solutions was tested by proposed detection program and evaluated using objective criteria.
323

Softwarové možnosti nasazení algoritmů metod umělé inteligence v průmyslu / Software possibilities of using algorithms of artificial intelligence methods in industry

Karas, Kristián January 2021 (has links)
The work is focused on the use of artificial intelligence techniques in the industry and in systems for monitoring machines. In the practical part, the work focuses on the construction of a convolutional neural network and its testing on real data for diagnosing the state of the machine.
324

You Only Gesture Once (YouGo): American Sign Language Translation using YOLOv3

Mehul Nanda (8786558) 01 May 2020 (has links)
<div>The study focused on creating and proposing a model that could accurately and precisely predict the occurrence of an American Sign Language gesture for an alphabet in the English Language</div><div>using the You Only Look Once (YOLOv3) Algorithm. The training dataset used for this study was custom created and was further divided into clusters based on the uniqueness of the ASL sign.</div><div>Three diverse clusters were created. Each cluster was trained with the network known as darknet. Testing was conducted using images and videos for fully trained models of each cluster and</div><div>Average Precision for each alphabet in each cluster and Mean Average Precision for each cluster was noted. In addition, a Word Builder script was created. This script combined the trained models, of all 3 clusters, to create a comprehensive system that would create words when the trained models were supplied</div><div>with images of alphabets in the English language as depicted in ASL.</div>
325

Visual Transformers for 3D Medical Images Classification: Use-Case Neurodegenerative Disorders

Khorramyar, Pooriya January 2022 (has links)
A Neurodegenerative Disease (ND) is progressive damage to brain neurons, which the human body cannot repair or replace. The well-known examples of such conditions are Dementia and Alzheimer’s Disease (AD), which affect millions of lives each year. Although conducting numerous researches, there are no effective treatments for the mentioned diseases today. However, early diagnosis is crucial in disease management. Diagnosing NDs is challenging for neurologists and requires years of training and experience. So, there has been a trend to harness the power of deep learning, including state-of-the-art Convolutional Neural Network (CNN), to assist doctors in diagnosing such conditions using brain scans. The CNN models lead to promising results comparable to experienced neurologists in their diagnosis. But, the advent of transformers in the Natural Language Processing (NLP) domain and their outstanding performance persuaded Computer Vision (CV) researchers to adapt them to solve various CV tasks in multiple areas, including the medical field. This research aims to develop Vision Transformer (ViT) models using Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset to classify NDs. More specifically, the models can classify three categories (Cognitively Normal (CN), Mild Cognitive Impairment (MCI), Alzheimer’s Disease (AD)) using brain Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET) scans. Also, we take advantage of Automated Anatomical Labeling (AAL) brain atlas and attention maps to develop explainable models. We propose three ViTs, the best of which obtains an accuracy of 82% on the test dataset with the help of transfer learning. Also, we encode the AAL brain atlas information into the best performing ViT, so the model outputs the predicted label, the most critical region in its prediction, and overlaid attention map on the input scan with the crucial areas highlighted. Furthermore, we develop two CNN models with 2D and 3D convolutional kernels as baselines to classify NDs, which achieve accuracy of 77% and 73%, respectively, on the test dataset. We also conduct a study to find out the importance of brain regions and their combinations in classifying NDs using ViTs and the AAL brain atlas. / <p>This thesis was awarded a prize of 50,000 SEK by Getinge Sterilization for projects within Health Innovation.</p>
326

Prediction of the number of weekly covid-19 infections : A comparison of machine learning methods

Branding, Nicklas January 2022 (has links)
The thesis two-folded problem aim was to identify and evaluate candidate Machine Learning (ML) methods and performance methods, for predicting the weekly number of covid-19 infections. The two-folded problem aim was created from studying public health studies where several challenges were identified. One challenge identified was the lack of using sophisticated and hybrid ML methods in the public health research area. In this thesis a comparison of ML methods for predicting the number of covid-19 weekly infections has been performed. A dataset taken from the Public Health Agency in Sweden consisting of 101weeks divided into a 60 % training set and a 40% testing set was used in the evaluation. Five candidate ML methods have been investigated in this thesis called Support Vector Regressor (SVR), Long Short Term Memory (LSTM), Gated Recurrent Network (GRU), Bidirectional-LSTM (BI-LSTM) and LSTM-Convolutional Neural Network (LSTM-CNN). These methods have been evaluated based on three performance measurements called Root Mean Squared Error (RMSE), Mean Absolute Error (MAE) and R2. The evaluation of these candidate ML resulted in the LSTM-CNN model performing the best on RMSE, MAE and R2.
327

Brain Tumor Grade Classification in MR images using Deep Learning / Klassificering av hjärntumör-grad i MR-bilder genom djupinlärning

Chatzitheodoridou, Eleftheria January 2022 (has links)
Brain tumors represent a diverse spectrum of cancer types which can induce grave complications and lead to poor life expectancy. Amongst the various brain tumor types, gliomas are primary brain tumors that compose about 30% of adult brain tumors. They are graded according to the World Health Organization into Grades 1 to 4 (G1-G4), where G4 is the highest grade with the highest malignancy and poor prognosis. Early diagnosis and classification of brain tumor grade is very important since it can improve the treatment procedure and (potentially) prolong a patient's life, since life expectancy largely depends on the level of malignancy and the tumor's histological characteristics. While clinicians have diagnostic tools they use as a gold standard, such as biopsies these are either invasive or costly. A widely used example of a non-invasive technique is magnetic resonance imaging, due to its ability to produce images with different soft-tissue contrast and high spatial resolution thanks to multiple imaging sequences. However, the examination of such images can be overwhelming for radiologists due to the overall large amount of data. Deep learning approaches, on the other hand, have shown great potential in brain tumor diagnosis and can assist radiologists in the decision-making process. In this thesis, brain tumor grade classification in MR images is performed using deep learning. Two popular pre-trained CNN models (VGG-19, ResNet50) were employed using single MR modalities and combinations of them to classify gliomas into three grades. All models were trained using data augmentation on 2D images from the TCGA dataset, which consisted of 3D volumes from 142 anonymized patients. The models were evaluated based on accuracy, precision, recall, F1-score, AUC score, as well as the Wilcoxon Signed-Rank test to establish if one classifier was statistically significantly better than the other. Since deep learning models are typically 'black box' models and can be difficult to interpret by non-experts, Gradient-weighted Class Activation Mapping (Grad-CAM) was used in order to address model explainability. For single modalities, VGG-19 displayed the highest performance with a test accuracy of 77.86%, whilst for combinations of two and three modalities T1ce, FLAIR and T2, T1ce, FLAIR were the best performing ones for VGG-19 with a test accuracy of 74.48%, 75.78%, respectively. Statistical comparisons indicated that for single MR modalities and combinations of two MR modalities, there was not a statistically significant difference between the two classifiers, whilst for combination of three modalities, one model was better than the other. However, given the small size of the test population, these comparisons have low statistical power. The use of Grad-CAM for model explainability indicated that ResNet50 was able to localize the tumor region better than VGG-19.
328

Comparing decentralized learning to Federated Learning when training Deep Neural Networks under churn

Vikström, Johan January 2021 (has links)
Decentralized Machine Learning could address some problematic facets with Federated Learning. There is no central server acting as an arbiter of whom or what may benefit from Machine Learning models created by the vast amount of data becoming available in recent years. It could also increase the reliability and scalability of Machine Learning systems thereby drawing the benefit of having more data accessible. Gossip Learning is such a protocol, but has primarily been designed with linear models in mind. How does Gossip Learning perform when training Deep Neural Networks? Could it be a viable alternative to Federated Learning? In this thesis, we implement Gossip Learning using two different model merging strategies. We also design and implement two extensions to this protocol with the goal of achieving higher performance when training under churn. The training methods are compared on two tasks: image classification on the Federated Extended MNIST dataset and time- series forecasting on the NN5 dataset. Additionally, we also run an experiment where learners churn, alternating between being available and unavailable. We find that Gossip Learning performs slightly better in settings where learners do not churn but is vastly outperformed in the setting where they do. / Decentraliserad Maskinginlärning kan lösa några problematiska aspekter med Federated Learning. Det finns ingen central server som agerar som domare för vilka som får gagna av Maskininlärningsmodellerna skapad av den stora mäng data som blivit tillgänglig på senare år. Det skulle också kunna öka pålitligheten och skalbarheten av Maskininlärningssystem och därav dra nytta av att mer data är tillgänglig. Gossip Learning är ett sånt protokoll, men det är primärt designat med linjära modeller i åtanke. Hur presterar Gossip Learning när man tränar Djupa Neurala Nätverk? Kan det vara ett möjligt alternativ till Federated Learning? I det här exjobbet implementerar vi Gossip Learning med två olika modelsammanslagningstekniker. Vi designar och implementerar även två tillägg till protokollet med målet att uppnå bättre prestanda när man tränar i system där noder går ner och kommer up. Träningsmetoderna jämförs på två uppgifter: bildklassificering på Federated Extended MNIST datauppsättningen och tidsserieprognostisering på NN5 datauppsättningen. Dessutom har vi även experiment då noder alternerar mellan att vara tillgängliga och otillgängliga. Vi finner att Gossip Learning presterar marginellt bättre i miljöer då noder alltid är tillgängliga men är kraftigt överträffade i miljöer då noder alternerar mellan att vara tillgängliga och otillgängliga.
329

Assistance system for an automated log-quality and assortment estimation based on data-driven approaches using hydraulic signals of forestry machines

Geiger, Chris, Maier, Niklas, Kalinke, Florian, Geimer, Marcus 26 June 2020 (has links)
The correct classification of a logs assortment is crucial for the economic output within a fully mechanized timber harvest. This task is especially for unexperienced but also for professional machine operators mentally demanding. This paper presents a method towards an assistance system for machine operators for an automated log quality and assortment estimation. Therefore, machine vision methods for object detection are combined with machine learning approaches for estimating the logs weight based on a Convolutional Neural Network (CNN). Based on the dimensions oft he object ´log, a first categorisation into a specific assortment is done. By comparing the theoretical weight of a healthy log of such dimensions to the real weight estimated by the CNN-based crane scale, quality reducing properties such as beetle infestation or red rod can be detected. In such cases, the assistance system displays a visual warning to the operator to check the loaded log.
330

Diverse Time Redundant Triplex Parallel Convolutional Neural Networks for Unmanned Aerial Vehicle Detection

Stepien, Hubert, Bilger, Martin January 2021 (has links)
Safe airspace of airports worldwide is crucial to ensure that passengers, workers, and airplanes are safe from external threats, whether malicious or not. In recent years, several airports worldwide experienced intrusions into their airspace by unmanned aerial vehicles. Based on this observation, there is a need for a reliable detection system capable of detecting unmanned aerial vehicles with high accuracy and integrity. This thesis proposes time redundant triplex parallel diverse convolutional neural network architectures trained to detect unmanned aerial vehicles to address the aforementioned issue. The thesis aims at producing a system capable of real-time performance coupled with previously mentioned networks. The hypothesis in this method will result in lower mispredictions of objects other than drones and high accuracy compared to singular convolutional neural networks. Several improvements to accuracy, lower mispredictions, and faster detection times were observed during the performed experiments with the proposed system. Furthermore, a new way of interpreting the intersection over union results for all neural networks is introduced to ensure the correctness and reliability of results. Lastly, the system produced by this thesis is analyzed from a dependability viewpoint to provide an overview of how this contributes to dependability research.

Page generated in 0.1146 seconds