• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 268
  • 36
  • 15
  • 11
  • 10
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 430
  • 430
  • 430
  • 275
  • 206
  • 192
  • 127
  • 103
  • 93
  • 82
  • 81
  • 72
  • 68
  • 62
  • 61
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

SlimRank: um modelo de seleção de respostas para perguntas de consumidores / SlimRank: an answer selection model for consumer questions

Marcelo Criscuolo 16 November 2017 (has links)
A disponibilidade de conteúdo gerado por usuários em sites colaborativos de perguntas e respostas tem impulsionado o avanço de modelos de Question Answering (QA) baseados em reúso. Essa abordagem pode ser implementada por meio da tarefa de seleção de respostas (Answer Selection, AS), que consiste em encontrar a melhor resposta para uma dada pergunta em um conjunto pré-selecionado de respostas candidatas. Nos últimos anos, abordagens baseadas em vetores distribucionais e em redes neurais profundas, em particular em redes neurais convolutivas (CNNs), têm apresentado bons resultados na tarefa de AS. Contudo, a maioria dos modelos é avaliada sobre córpus de perguntas objetivas e bem formadas, contendo poucas palavras. Raramente estruturas textuais complexas são consideradas. Perguntas de consumidores, comuns em sites colaborativos, podem ser bastante complexas. Em geral, são representadas por múltiplas frases inter-relacionadas, que apresentam pouca objetividade, vocabulário leigo e, frequentemente, contêm informações em excesso. Essas características aumentam a dificuldade da tarefa de AS. Neste trabalho, propomos um modelo de seleção de respostas para perguntas de consumidores. São contribuições deste trabalho: (i) uma definição para o objeto de pesquisa perguntas de consumidores; (ii) um novo dataset desse tipo de pergunta, chamado MilkQA; e (iii) um modelo de seleção de respostas, chamado SlimRank. O MilkQA foi criado a partir de um arquivo de perguntas e respostas coletadas pelo serviço de atendimento de uma renomada instituição pública de pesquisa agropecuária (Embrapa). Anotadores guiados pela definição de perguntas de consumidores proposta neste trabalho selecionaram 2,6 mil pares de perguntas e respostas contidas nesse arquivo. A análise dessas perguntas levou ao desenvolvimento do modelo SlimRank, que combina representação de textos na forma de grafos semânticos com arquiteturas de CNNs. O SlimRank foi avaliado no dataset MilkQA e comparado com baselines e dois modelos do estado da arte. Os resultados alcançados pelo SlimRank foram bastante superiores aos resultados dos baselines, e compatíveis com resultados de modelos do estado da arte; porém, com uma significativa redução do tempo computacional. Acreditamos que a representação de textos na forma de grafos semânticos combinada com CNNs seja uma abordagem promissora para o tratamento dos desafios impostos pelas características singulares das perguntas de consumidores. / The increasing availability of user-generated content in community Q&A sites has led to the advancement of Question Answering (QA) models that relies on reuse. Such approach can be implemented by the task of Answer Selection (AS), which consists in finding the best answer for a given question in a pre-selected pool candidate answers. Recently, good results have been achieved by AS models based on distributed word vectors and deep neural networks that are used to rank answers for a given question. Convolutinal Neural Networks (CNNs) are particularly succesful in this task. Most of the AS models are built over datasets that contains only short and objective questions expressed as interrogative sentences containing few words. Complex text structures are rarely considered. However, consumer questions may be really complex. This kind of question is the main form of seeking information in community Q&A sites, forums and customer services. Consumer questions have characteristics that increase the difficulty of the answer selection task. In general, they are composed of multiple interrelated sentences that are usually subjective, and contains laymans terms and excess of details that may be not particulary relevant. In this work, we propose an answer selection model for consumer questions. Specifically the contributions of this work are: (i) a definition for the consumer questions research object; (ii) a new dataset of this kind of question, which we call MilkQA; and (iii) an answer selection model, named SlimRank. MilkQA was created from an archive of questions and answers collected by the customer service of a well-known public agricultural research institution (Embrapa). It contains 2.6 thousand question-answer pairs selected and anonymized by human annotators guided by the definition proposed in this work. The analysis of questions in MilkQA led to the development of SlimRank, which combines semantic textual graphs with CNN architectures. SlimRank was evaluated on MilkQA and compared to baselines and two state-of-the-art answer selection models. The results achieved by our model were much higher than the baselines and comparable to the state of the art, but with significant reduction of computational time. Our results suggest that combining semantic text graphs with convolutional neural networks are a promising approach for dealing with the challenges imposed by consumer questions unique characteristics.
152

Sentiment analysis of Swedish reviews and transfer learning using Convolutional Neural Networks

Sundström, Johan January 2018 (has links)
Sentiment analysis is a field within machine learning that focus on determine the contextual polarity of subjective information. It is a technique that can be used to analyze the "voice of the customer" and has been applied with success for the English language for opinionated information such as customer reviews, political opinions and social media data. A major problem regarding machine learning models is that they are domain dependent and will therefore not perform well for other domains. Transfer learning or domain adaption is a research field that study a model's ability of transferring knowledge across domains. In the extreme case a model will train on data from one domain, the source domain, and try to make accurate predictions on data from another domain, the target domain. The deep machine learning model Convolutional Neural Network (CNN) has in recent years gained much attention due to its performance in computer vision both for in-domain classification and transfer learning. It has also performed well for natural language processing problems but has not been investigated to the same extent for transfer learning within this area. The purpose of this thesis has been to investigate how well suited the CNN is for cross-domain sentiment analysis of Swedish reviews. The research has been conducted by investigating how the model perform when trained with data from different domains with varying amount of source and target data. Additionally, the impact on the model’s transferability when using different text representation has also been studied. This study has shown that a CNN without pre-trained word embedding is not that well suited for transfer learning since it performs worse than a traditional logistic regression model. Substituting 20% of source training data with target data can in many of the test cases boost the performance with 7-8% both for the logistic regression and the CNN model. Using pre-trained word embedding produced by a word2vec model increases the CNN's transferability as well as the in-domain performance and outperform the logistic regression model and the CNN model without pre-trained word embedding in the majority of test cases.
153

Hluboké neuronové sítě a jejich využití při zpracování ekonomických dat / Deep neural networks and their application for economic data processing

Witzany, Tomáš January 2017 (has links)
Title: Deep neural networks and their application for economic data processing Author: Bc. Tomáš Witzany Department: Department of Theoretical Computer Science and Mathematical Logic Supervisor: Doc. RNDr. Iveta Mrázová, CSc., Department of Theoretical Com- puter Science and Mathematical Logic Abstract: Analysis of macroeconomic time-series is key for the informed decisions of national policy makers. Economic analysis has a rich history, however when considering modeling non-linear dependencies there are many unresolved issues in this field. One of the possible tools for time-series analysis are machine learn- ing methods. Of these methods, neural networks are one of the commonly used methods to model non-linear dependencies. This work studies different types of deep neural networks and their applicability for different analysis tasks, including GDP prediction and country classification. The studied models include multi- layered neural networks, LSTM networks, convolutional networks and Kohonen maps. Historical data of the macroeconomic development across over 190 differ- ent countries over the past fifty years is presented and analysed. This data is then used to train various models using the mentioned machine learning methods. To run the experiments we used the services of the computer center MetaCentrum....
154

Image Augmentation to Create Lower Quality Images for Training a YOLOv4 Object Detection Model

Melcherson, Tim January 2020 (has links)
Research in the Arctic is of ever growing importance, and modern technology is used in news ways to map and understand this very complex region and how it is effected by climate change. Here, animals and vegetation are tightly coupled with their environment in a fragile ecosystem, and when the environment undergo rapid changes it risks damaging these ecosystems severely.  Understanding what kind of data that has potential to be used in artificial intelligence, can be of importance as many research stations have data archives from decades of work in the Arctic. In this thesis, a YOLOv4 object detection model has been trained on two classes of images to investigate the performance impacts of disturbances in the training data set. An expanded data set was created by augmenting the initial data to contain various disturbances. A model was successfully trained on the augmented data set and a correlation between worse performance and presence of noise was detected, but changes in saturation and altered colour levels seemed to have less impact than expected. Reducing noise in gathered data is seemingly of greater importance than enhancing images with lacking colour levels. Further investigations with a larger and more thoroughly processed data set is required to gain a clearer picture of the impact of the various disturbances.
155

Classification of tree species from 3D point clouds using convolutional neural networks

Wiklander, Marcus January 2020 (has links)
In forest management, knowledge about a forest's distribution of tree species is key. Being able to automate tree species classification for large forest areas is of great interest, since it is tedious and costly labour doing it manually. In this project, the aim was to investigate the efficiency of classifying individual tree species (pine, spruce and deciduous forest) from 3D point clouds acquired by airborne laser scanning (ALS), using convolutional neural networks. Raw data consisted of 3D point clouds and photographic images of forests in northern Sweden, collected from a helicopter flying at low altitudes. The point cloud of each individual tree was connected to its representation in the photos, which allowed for manual labeling of training data to be used for training of convolutional neural networks. The training data consisted of labels and 2D projections created from the point clouds, represented as images. Two different convolutional neural networks were trained and tested; an adaptation of the LeNet architecture and the ResNet architecture. Both networks reached an accuracy close to 98 %, the LeNet adaptation having a slightly lower loss score for both validation and test data compared to that of ResNet. Confusion matrices for both networks showed similar F1 scores for all tree species, between 97 % and 98 %. The accuracies computed for both networks were found higher than those achieved in similar studies using ALS data to classify individual tree species. However, the results in this project were never tested against a true population sample to confirm the accuracy. To conclude, the use of convolutional neural networks is indeed an efficient method for classification of tree species, but further studies on unbiased data is needed to validate these results.
156

Výpočet mapy disparity ze stereo obrazu / Disparity Map Estimation from Stereo Image

Tábi, Roman January 2017 (has links)
The master thesis focuses on disparity map estimation using convolutional neural network. It discusses the problem of using convolutional neural networks for image comparison and disparity computation from stereo image as well as existing approaches of solutions for given problem. It also proposes and implements system that consists of convolutional neural network that measures the similarity between two image patches, and filtering and smoothing methods to improve the result disparity map. Experiments and results show, that the most quality disparity maps are computed using CNN on input patches with the size of 9x9 pixels combined with matching cost agregation and correction algorithm and bilateral filter.
157

Sémantický popis obrazovky embedded zařízení / Semantic description of the embedded device screen

Horák, Martin January 2020 (has links)
Tato diplomová práce se zabývá detekcí prvků uživatelského rozhraní na obrázku displejetiskárny za použití konvolučních neuronových sítí. V teoretické části je provedena rešeršesoučasně používaných architektur pro detekci objektů. V praktické čísti je probrána tvorbagalerie, učení a vyhodnocování vybraných modelů za použití Tensorflow ObjectDetectionAPI. Závěr práce pojednává o vhodnosti vycvičených modelů pro zadaný úkol.
158

Evoluční návrh konvolučních neuronových sítí / Evolutionary Design of Convolutional Neural Networks

Piňos, Michal January 2020 (has links)
The aim of this work is to design and implement a program for automated design of convolutional neural networks (CNN) with the use of evolutionary computing techniques. From a practical point of view, this approach reduces the requirements for the human factor in the design of CNN architectures, and thus eliminates the tedious and laborious process of manual design. This work utilizes a special form of genetic programming, called Cartesian genetic programming, which uses a graph representation for candidate solution encoding.This technique enables the user to parameterize the CNN search process and focus on architectures, that are interesting from the view of used computational units, accuracy or number of parameters. The proposed approach was tested on the standardized CIFAR-10dataset, which is often used by researchers to compare the performance of their CNNs. The performed experiments showed, that this approach has both research and practical potential and the implemented program opens up new possibilities in automated CNN design.
159

Reconstruction of the ionization history from 21cm maps with deep learning

Mangena January 2020 (has links)
Masters of Science / Upcoming and ongoing 21cm surveys, such as the Square Kilometre Array (SKA), Hydrogen Epoch of Reionization Array (HERA) and Low Frequency Array (LOFAR), will enable imaging of the neutral hydrogen distribution on cosmological scales in the early Universe. These experiments are expected to generate huge imaging datasets that will encode more information than the power spectrum. This provides an alternative unique way to constrain the astrophysical and cosmological parameters, which might break the degeneracies in the power spectral analysis. The global history of reionization remains fairly unconstrained. In this thesis, we explore the viability of directly using the 21cm images to reconstruct and constrain the reionization history. Using Convolutional Neural Networks (CNN), we create a fast estimator of the global ionization fraction from the 21cm images as produced by our Large Semi-numerical Simulation (SimFast21). Our estimator is able to efficiently recover the ionization fraction (xHII) at several redshifts, z = 7; 8; 9; 10 with an accuracy of 99% as quantified by the coefficient of determination R2 without being given any additional information about the 21cm maps. This approach, contrary to estimations based on the power spectrum, is model independent. When adding the thermal noise and instrumental effects from these 21cm arrays, the results are sensitive to the foreground removal level, affecting the recovery of high neutral fractions. We also observe similar trend when combining all redshifts but with an improved accuracy. Our analysis can be easily extended to place additional constraints on other astrophysical parameters such as the photon escape fraction. This work represents a step forward to extract the astrophysical and cosmological information from upcoming 21cm surveys.
160

Automatic Dispatching of Issues using Machine Learning / Automatisk fördelning av ärenden genom maskininlärning

Bengtsson, Fredrik, Combler, Adam January 2019 (has links)
Many software companies use issue tracking systems to organize their work. However, when working on large projects, across multiple teams, a problem of finding the correctteam to solve a certain issue arises. One team might detect a problem, which must be solved by another team. This can take time from employees tasked with finding the correct team and automating the dispatching of these issues can have large benefits for the company. In this thesis, the use of machine learning methods, mainly convolutional neural networks (CNN) for text classification, has been applied to this problem. For natural language processing both word- and character-level representations are commonly used. The results in this thesis suggests that the CNN learns different information based on whether word- or character-level representation is used. Furthermore, it was concluded that the CNN models performed on similar levels as the classical Support Vector Machine for this task. When compared to a human expert, working with dispatching issues, the best CNN model performed on a similar level when given the same information. The high throughput of a computer model, therefore, suggests automation of this task is very much possible.

Page generated in 0.0773 seconds