Spelling suggestions: "subject:"corpos dde funções"" "subject:"corpos dee funções""
1 |
Sobre corpos de funções algébricas e algumas relações com a criptografia / On algebraic function fields and some relations with cryptographyFerreira, Jamil, 1956- 07 February 2013 (has links)
Orientador: Sueli Irene Rodrigues Costa / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-23T07:10:07Z (GMT). No. of bitstreams: 1
Ferreira_Jamil_D.pdf: 1528200 bytes, checksum: a1ca349425c4bcf544a36d17d3157b3c (MD5)
Previous issue date: 2013 / Resumo: O número de classes de divisores de grau zero, h, de corpos de funções algébricas elípticos e hiperelípticos desempenha papel importante nos esquemas criptográficos baseados em curvas elípticas e hiperelípticas. Nesse contexto, h é um número grande e é usualmente procurado por meio de algoritmos (baby step - giant step, por exemplo) em um intervalo de números reais obtido após um truncamento no produto infinito de Euler da função zeta do corpo de funções. Tendo a desigualdade de Hasse-Weil como motivação, encontramos identidades finitas para h que são também explícitas no sentido de que seus custos computacionais são diretamente deduzíveis dessas identidades. Como consequência, obtivemos também identidades finitas e explícitas para os coeficientes ai do L-polinômio da função zeta. Ferramentas fundamentais nesta pesquisa foram as L-séries de Artin e outros resultados envolvendo os símbolos polinomiais de Legendre / Abstract: The divisor class number of degree zero, h, of elliptic and hyperelliptic function fields plays an important role in cryptographic schemes based on elliptic and hyperelliptic curves. In this context, h is a large number and it is usually searched by means of algorithms (baby step - giant step, for example) in an interval of real numbers obtained after truncating the infinit Euler product coming from the zeta function of the function field. Taking the Hasse-Weil inequality as motivation, we derived finite identities for h which are also explicit in the sense that their computational costs are straightforwardly derivable from these identities. We also obtained finite and explicit identities for the coefficients ai of the L-polynomialof the zeta function. Fundamental tools for this research were the Artin L-series and other results involving the Legendre polynomial symbols / Doutorado / Matematica / Doutor em Matemática
|
2 |
Corpos de funções com um número prescrito de lugares de grau superiorCoutinho, Mariana de Almeida Nery 10 March 2015 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2016-01-13T13:41:39Z
No. of bitstreams: 1
marianadealmeidanerycoutinho.pdf: 1084614 bytes, checksum: dded13e49c590fa1685ce4a2b9e5cf3c (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-01-25T17:33:13Z (GMT) No. of bitstreams: 1
marianadealmeidanerycoutinho.pdf: 1084614 bytes, checksum: dded13e49c590fa1685ce4a2b9e5cf3c (MD5) / Made available in DSpace on 2016-01-25T17:33:13Z (GMT). No. of bitstreams: 1
marianadealmeidanerycoutinho.pdf: 1084614 bytes, checksum: dded13e49c590fa1685ce4a2b9e5cf3c (MD5)
Previous issue date: 2015-03-10 / FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas Gerais / O estudo das curvas algébricas sobre corpos finitos, o qual está intrinsecamente
relacionado à teoria dos corpos de funções sobre corpos finitos, é de grande interesse
na álgebra abstrata, com destaque para aplicações na teoria dos números e na
teoria dos códigos. Com essa motivação, estamos aqui interessados em estudar
a existência de corpos de funções F/Fq com um número prescrito de lugares de
determinados graus, estando baseados em algumas seções do artigo de ANBAR e
STICHTENOTH (2013). Para isso, faremos também uma abordagem acerca da
teoria geral dos corpos de funções, apresentando os principais elementos que nos
auxiliarão na compreensão dos resultados anteriormente mencionados. / The study of algebraic curves over finite fields, which is intrinsically related to the
theory of function fields over finite fields, is of great interest in abstract algebra,
especially for applications in number theory and coding theory. With this motivation,
we are here interested in studying the existence of function fields with a
prescribed number of places of certain degrees, based on some sections of the paper
of ANBAR and STICHTENOTH (2013). For this, we will also make a study of
the general theory of function fields, showing the main elements that will assist us
in understanding the results mentioned above.
|
3 |
Curvas algébricas sobre corpos finitos / Algebraic curves over finite fieldsVicentim, Steve da Silva 27 April 2012 (has links)
A Teoria das curvas algébricas sobre corpos finitos é de fundamental importância para a matemática e tem aplicações essenciais em muitas áreas, tais como Geometria Finita, Teoria dos Números, Teoria de Grafos e Teoria de Códigos. Neste trabalho tratamos do segmento algébrico desta teoria, isto é, corpos de funções algébricas, inicialmente sobre qualquer corpo, apresentando propriedades fundamentais. Depois nos restringimos aos corpos de funções algébricas sobre corpos finitos, e são apresentados resultados referentes à estimativa do gênero e número de lugares racionais, além de propriedades que conectam estes dois números e a característica do corpo, sendo o principal resultado dado por: Para q uma potência de um número primo e N inteiro não negativo, existe uma constante inteira não negativa g0 (dependendo de q e N) tal que, para todo g maior ou igual a \'g IND. 0\', existe um corpo de funções sobre \'F IND. q\' de gênero g tendo exatamente N lugares racionais / The Theory of algebraic curves over finite fields is of fundamental importance to mathematics and has essential applications in many areas, such Finite Geometry, Number Theory, Graph Theory and Coding Theory. In this work we treat the algebraic part of this theory, ie, algebraic function fields, initially over any field, presenting fundamental properties. Then we restrict to algebraic function fields over finite fields, and presented results for the estimation of the genus and the number of racional places, as well as properties that connect these two numbers and the characteristic of the constant field, being the main result given by: For q a prime power and N a non-negative integer, there is an integer non-negative \'g IND. 0\' (that depends of q and N) such that for all \'g > or =\' \'g IND. 0\' , there exists a function field over \'F IND. q\' with genus g having exactly N racional places
|
4 |
Curvas algébricas sobre corpos finitos / Algebraic curves over finite fieldsSteve da Silva Vicentim 27 April 2012 (has links)
A Teoria das curvas algébricas sobre corpos finitos é de fundamental importância para a matemática e tem aplicações essenciais em muitas áreas, tais como Geometria Finita, Teoria dos Números, Teoria de Grafos e Teoria de Códigos. Neste trabalho tratamos do segmento algébrico desta teoria, isto é, corpos de funções algébricas, inicialmente sobre qualquer corpo, apresentando propriedades fundamentais. Depois nos restringimos aos corpos de funções algébricas sobre corpos finitos, e são apresentados resultados referentes à estimativa do gênero e número de lugares racionais, além de propriedades que conectam estes dois números e a característica do corpo, sendo o principal resultado dado por: Para q uma potência de um número primo e N inteiro não negativo, existe uma constante inteira não negativa g0 (dependendo de q e N) tal que, para todo g maior ou igual a \'g IND. 0\', existe um corpo de funções sobre \'F IND. q\' de gênero g tendo exatamente N lugares racionais / The Theory of algebraic curves over finite fields is of fundamental importance to mathematics and has essential applications in many areas, such Finite Geometry, Number Theory, Graph Theory and Coding Theory. In this work we treat the algebraic part of this theory, ie, algebraic function fields, initially over any field, presenting fundamental properties. Then we restrict to algebraic function fields over finite fields, and presented results for the estimation of the genus and the number of racional places, as well as properties that connect these two numbers and the characteristic of the constant field, being the main result given by: For q a prime power and N a non-negative integer, there is an integer non-negative \'g IND. 0\' (that depends of q and N) such that for all \'g > or =\' \'g IND. 0\' , there exists a function field over \'F IND. q\' with genus g having exactly N racional places
|
5 |
Sobre codigos hermitianos generalizados / On generalized hermitian codesSepúlveda Castellanos, Alonso 21 February 2008 (has links)
Orientador: Fernando Eduardo Torres Orihuela / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T07:01:07Z (GMT). No. of bitstreams: 1
SepulvedaCastellanos_Alonso_D.pdf: 783003 bytes, checksum: 2af4bba938cd5b7d31fcd02a5c79ac85 (MD5)
Previous issue date: 2008 / Resumo: Estudamos os códigos de Goppa (códigos GH) sobre certos corpos de funções algébricas com muitos lugares racionais. Estes códigos generalizam os bem conhecidos códigos Hermitianos; portanto podemos esperar que estes códigos tenham bons parâmetros. Bulygin (IEEE Trans. Inform. Theory 52 (10), 4664¿4669 (2006)) inicia o estudo dos códigos GH; enquanto Bulygin considerou somente característica par, nosso trabalho 'e feito em qualquer característica. Em qualquer caso, nosso trabalho é fortemente influenciado pelo de Bulygin. A seguir, listamos alguns dos nossos resultados com respeito aos códigos GH. ¿ Calculamos ¿distâncias mínimas exatas¿, em particular, melhoramos os resultados de Bulygin; ¿ Encontramos cotas para os pesos generalizados de Hamming, al'em disso, mostramos um algoritmo para aplicar estes cálculos na criptografia; ¿ Calculamos um subgrupo de Automorfismos; ¿ Consideramos códigos em determinados subcorpos dos corpos usados para construir os códigos GH / Abstract: We study Goppa codes (GH codes) based on certain algebraic function fields whose number of rational places is large. These codes generalize the well-known Hermitian codes; thus we might expect that they have good parameters. Bulygin (IEEE Trans. Inform. Theory 52 (10), 4664¿4669 (2006)) initiate the study of GH-codes; while he considered only the even characteristic, our work is done regardless the characteristic. In any case our work was strongly influenced by Bulygin¿s. Next we list some of the results of our work with respect to GH-codes. ¿ We calculate ¿true minimum distances¿, in particular, we improve Bulygin¿s results; ¿ We find bounds on the generalized Hamming weights, moreover, we show an algorithm to apply these computations to the cryptography; ¿ We calculate an Automorphism subgroup; ¿ We consider codes on certain subfields of the fields used for to construct GH-codes / Doutorado / Algebra (Geometria Algebrica) / Doutor em Matemática
|
6 |
Códigos de Goppa e Distâncias Generalizadas de Hamming / Goppa Codes and Generalized Hamming WeightsLemes, Leandro Cruvinel 06 March 2009 (has links)
Fundação de Amparo a Pesquisa do Estado de Minas Gerais / In this work, we study geometric Goppa codes and present several results on the so-called
generalized Hamming distances. In the particular case of Hermitian codes we present precise
results for the first, second and third generalized distances, for almost all Goppa codes supported
on one point. / Neste trabalho estudamos códigos de Goppa e apresentamos diversos resultados sobre as assim
chamadas distâncias generalizadas de Hamming. No caso particular de códigos Hermitianos,
apresentamos resultados exatos para a primeira, segunda e terceira distâncias generalizadas de
Hamming, considerando quase todos os códigos suportados em um ponto. / Mestre em Matemática
|
7 |
Códigos lineares disjuntos e corpos de funções algébricasSilva, Pryscilla dos Santos Ferreira 24 February 2011 (has links)
Made available in DSpace on 2015-05-15T11:45:58Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 634504 bytes, checksum: ce035cc957832598c53dda96372e7cb7 (MD5)
Previous issue date: 2011-02-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work, based on algebraic function fields, we give constructions of disjoint linear codes. In addition,we study the asymptotic behavior of disjoint linear codes from our constructions. / Neste trabalho, baseados em corpos de funções algébricas, forneceremos construções de códigos lineares disjuntos. Além disso, nós estudaremos comportamentos assintóticos de códigos lineares disjuntos a partir da nossa construção.
|
8 |
Bases de Gröbner aplicadas a códigos corretores de errosRocha Junior, Mauro Rodrigues 11 August 2017 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-11-06T18:45:09Z
No. of bitstreams: 1
maurorodriguesrochajunior.pdf: 550118 bytes, checksum: 5b26ad1ab2bd9d4a190d742762346968 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-11-09T14:32:38Z (GMT) No. of bitstreams: 1
maurorodriguesrochajunior.pdf: 550118 bytes, checksum: 5b26ad1ab2bd9d4a190d742762346968 (MD5) / Made available in DSpace on 2017-11-09T14:32:38Z (GMT). No. of bitstreams: 1
maurorodriguesrochajunior.pdf: 550118 bytes, checksum: 5b26ad1ab2bd9d4a190d742762346968 (MD5)
Previous issue date: 2017-08-11 / O principal objetivo desse trabalho é estudar duas aplicações distintas das bases de Gröbner a códigos lineares. Com esse objetivo, estudamos como relacionar códigos a outras estruturas matemáticas, fazendo com que tenhamos novas ferramentas para a realização da codificação. Em especial, estudamos códigos cartesianos afins e os códigos algébrico-geométricos de Goppa. / The main objective of this work is to study two different applications of Gröbner basis to linear codes. With this purpose, we study how to relate codes to other mathematical structures, allowing us to use new tools to do the coding. In particular, we study affine cartesian codes e algebraic-geometric Goppa codes.
|
9 |
Códigos Hermitianos GeneralizadosMarín, Oscar Jhoan Palacio 23 June 2016 (has links)
Submitted by isabela.moljf@hotmail.com (isabela.moljf@hotmail.com) on 2016-08-15T15:24:51Z
No. of bitstreams: 1
oscarjhoanpalaciomarin.pdf: 723203 bytes, checksum: d8ac71f1e1162340ce21f336196d0070 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2016-08-16T13:02:45Z (GMT) No. of bitstreams: 1
oscarjhoanpalaciomarin.pdf: 723203 bytes, checksum: d8ac71f1e1162340ce21f336196d0070 (MD5) / Made available in DSpace on 2016-08-16T13:02:45Z (GMT). No. of bitstreams: 1
oscarjhoanpalaciomarin.pdf: 723203 bytes, checksum: d8ac71f1e1162340ce21f336196d0070 (MD5)
Previous issue date: 2016-06-23 / Nesse trabalho, estamos interessados, especialmente, nas propriedades de duas classes de Códigos Corretores de Erros: os Códigos Hermitianos e os Códigos Hermitianos Generalizados. O primeiro é definido a partir de lugares do corpo de funções Hermitiano clássico sobre um corpo finito de ordem quadrada, já o segundo é definido a partir de uma generalização desse mesmo corpo de funções. Como base para esse estudo, apresentamos ainda resultados da teoria de corpos de funções e outras construções de Códigos Corretores de Erros. / Inthisworkweinvestigatepropertiesoftwoclassesoferror-correctingcodes,theHermitian Codes and their generalization. The Hermitian Codes are defined using the classical Hermitian curve defined over a quadratic field. The generalized Hermitian Codes are similar, but uses a generalization of this curve. We also present some results of the theory of function fields and other constructions of error-correcting codes which are important to understand this work.
|
Page generated in 0.0651 seconds