• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 3
  • Tagged with
  • 21
  • 21
  • 16
  • 11
  • 10
  • 8
  • 8
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contrôle du regard: mécanismes et substrats neuronaux de l'adaptation des mouvements oculaires saccadiques chez l'homme

Muriel, Panouillères 12 July 2011 (has links) (PDF)
" - Comment apprécions-nous la complexité du monde qui nous entoure ? - En bougeant nos yeux ! - Pourquoi ? - Parce qu'une perception visuelle efficace (avec une acuité maximale !) nécessite de placer l'image des éléments pertinents du champ visuel au niveau d'une petite partie de notre rétine : la fovéa. " Les saccades oculaires sont les mouvements les plus rapides que peut produire notre organisme et sont malgré tout très précises. Le contrôle de ces mouvements représente un défi pour notre cerveau. En effet, ces saccades sont tellement rapides qu'aucune information visuelle ne peut modifier leur trajectoire en cours d'exécution. Mais alors, de quels moyens dispose notre cerveau pour maintenir ces performances tout au long de notre vie? En cas d'imprécision répétée, des mécanismes vont progressivement modifier l'amplitude de nos saccades oculaires afin d'en rétablir la précision. Cette adaptation saccadique repose sur des modifications centrales plastiques. Ce travail de thèse a comme vocation d'élucider les caractéristiques de l'adaptation saccadique chez l'homme. Des approches complémentaires ont permis d'étudier d'une part, l'adaptation des deux grandes catégories de saccades, réactives et volontaires, et d'autre part, l'adaptation en diminution et en augmentation d'amplitude. Nos données permettent de disséquer les mécanismes d'adaptation saccadique dans leur complexité et de mettre en évidence des structures neuronales indispensables à leur mise en place. Notre travail constitue également le support pour le développement de nouvelles procédures de rééducation, basées sur la plasticité oculomotrice.
2

Contrôle du regard : mécanismes et substrats neuronaux de l'adaptation des mouvements oculaires saccadiques chez l'homme

Panouillères, Muriel 12 July 2011 (has links) (PDF)
" - Comment apprécions-nous la complexité du monde qui nous entoure ?- En bougeant nos yeux !- Pourquoi ?- Parce qu'une perception visuelle efficace (avec une acuité maximale !) nécessite de placer l'image des éléments pertinents du champ visuel au niveau d'une petite partie de notre rétine : la fovéa. " Les saccades oculaires sont les mouvements les plus rapides que peut produire notre organisme et sont malgré tout très précises. Le contrôle de ces mouvements représente un défi pour notre cerveau. En effet, ces saccades sont tellement rapides qu'aucune information visuelle ne peut modifier leur trajectoire en cours d'exécution. Mais alors, de quels moyens dispose notre cerveau pour maintenir ces performances tout au long de notre vie? En cas d'imprécision répétée, des mécanismes vont progressivement modifier l'amplitude de nos saccades oculaires afin d'en rétablir la précision. Cette adaptation saccadique repose sur des modifications centrales plastiques. Ce travail de thèse a comme vocation d'élucider les caractéristiques de l'adaptation saccadique chez l'homme. Des approches complémentaires ont permis d'étudier d'une part, l'adaptation des deux grandes catégories de saccades, réactives et volontaires, et d'autre part, l'adaptation en diminution et en augmentation d'amplitude. Nos données permettent de disséquer les mécanismes d'adaptation saccadique dans leur complexité et de mettre en évidence des structures neuronales indispensables à leur mise en place. Notre travail constitue également le support pour le développement de nouvelles procédures de rééducation, basées sur la plasticité oculomotrice.
3

Implication du cortex pariétal postérieur dans le contrôle de la fonction du membre supérieur et de l’attention spatiale post-AVC : étude et modulation de la connectivité du cortex pariétal postérieur controlésionnel / Involvement of the posterior parietal cortex in the control of upper limb function and post-stroke spatial attention : study and modulation of the connectivity of the controlled posterior parietal cortex

Allart, Etienne 27 September 2017 (has links)
Le cortex pariétal postérieur (PPC) est une structure clé de l’intégration sensori-motrice qui forme, avec les structures frontales auxquelles il est connecté, des réseaux pariéto-frontaux aux fonctions spécifiques. Il est ainsi impliqué dans la planification et le contrôle des mouvements de préhension visuo-guidés mais aussi dans le contrôle de l’attention spatiale. L’atteinte fonctionnelle du membre supérieur et la négligence spatiale sont deux conséquences fréquentes et invalidantes après un accident vasculaire cérébral (AVC). Dans ces deux situations, il est démontré que la connectivité cérébrale des réseaux pariéto-frontaux est modifiée au sein de l’hémisphère lésé, mais aussi vers et au sein de l’hémisphère non-lésé. Par ailleurs, ces modifications semblent impliquées dans la genèse et/ou les mécanismes de récupération de la négligence spatiale et de la déficience motrice. Cependant, la spécificité des modifications de connectivité du PPC controlésionnel reste partiellement méconnue, en particulier si on considère les régions fonctionnelles spécialisées qui y ont été identifiées chez le sujet sain. Ces dernières incluent notamment les parties antérieure et postérieure du sillon intra-pariétal (respectivement aIPS et pIPS) et le cortex pariéto-occipital supérieur (SPOC). Les objectifs de ce travail étaient (1) d’étudier les modifications de la connectivité intra- et inter-hémisphérique de ces trois zones chez des patients post-AVC comparativement à un groupe de sujets contrôles sains, (2) de déterminer les liens de la connectivité avec la sévérité des déficiences motrices et visuo-spatiales, et enfin (3) de juger de l’effet de la modulation du PPC sur ces dernières.Dans un premier temps, nous avons mesuré, au repos, la connectivité des réseaux pariétofrontaux au sein de l’hémisphère controlésionnel en utilisant une technique de stimulation magnétique transcrânienne à impulsion double (ppTMS). La deuxième étude s’est intéressée aux aspects fonctionnels (IRM fonctionnelle de repos) et structurels (mesure de la fraction d’anisotropie sur des séquences de diffusion) de la connectivité intra- et inter-hémisphérique du PPC controlésionnel. Nous avons enfin analysé l’effet de la modulation inhibitrice du PPC controlésionnel (rTMS en mode thetaburst continu (cTBS)) sur les paramètres du mouvement de pointage avec le membre supérieur parétique.La première étude a mis en évidence une hyperexcitabilité des connexions pariéto-frontales chez les patients négligents lorsque la stimulation conditionnante concernait le SPOC, ce d’autant plus que la négligence péripersonnelle était sévère. La connectivité aIPS-M1 n’était pas différente entre sujets hémiparétique et contrôles, et le degré de déficience motrice n’était pas lié aux données de connectivité. Le travail d’imagerie a montré que la connectivité fonctionnelle et structurelle du PPC controlésionnel était altérée chez les patients, au sein de l’hémisphère controlésionnel mais aussi vers l’hémisphère lésé, de manière différente selon les sites du PPC. Les données de connectivité fonctionnelle montraient des liens avec la sévérité de la négligence spatiale mais peu avec celle de la déficience motrice. Enfin, l’inhibition du PPC controlésionnel par un protocole de cTBS pourrait améliorer l’excitabilité de M1 du coté lésé et certains paramètres spatiaux et temporels du mouvement de pointage. Les patients post-AVC présentaient donc des modifications étendues de connectivité cérébrale du PPC controlésionnel, à la fois intra- et inter-hémisphériques. Alors que des liens entre connectivité et négligence ont été mis en évidence, il n’existait que peu de relation avec la déficience motrice, probablement parce qu’elle est déterminée par un nombre important d’autres facteurs. Enfin, ce travail ouvre de nouvelles pistes d’évolution des stratégies de modulation par les techniques de stimulation cérébrale non-invasives en post-AVC. / The posterior parietal cortex (PPC) is a key structure for sensorimotor integration. It forms with the frontal areas to which it is connected the parieto-frontal networks that have specialized functions. It is involved in the planning and online control of visually-guided prehension but also in the control of spatial attention. Upper limb impairment and spatial neglect are two frequent and disabling consequences of stroke. In these two deficiencies, it has been shown that cerebral connectivity in the parieto-frontal networks is modified within the lesioned hemisphere, but also towards and within the non-lesioned hemisphere due to an imbalance in the interhemispheric influences between parietal areas. Furthermore, these modifications seem to be involved in the genesis and/or the recovery of spatial neglect and motor deficiency. However, the changes in connectivity remain partly unknown, especially if we consider the different PPC functional areas identified in healthy subjects in the PPC (anterior and posterior parts of the intraparietal sulcus (respectively aIPS and pIPS) and the superior parieto-occipital cortex (SPOC)). The aims of the present work were (1) to study the modifications of intra- and interhemispheric cerebral connectivity of these 3 PPC areas in post-stroke patients vs healthy controls, (2) determine the relationship between connectivity data and the severity of motor and visuo-spatial deficiencies, and (3) study the effect of a modulation of the PPC on these deficiencies.We first assessed the connectivity of parieto-frontal networks within the contralesional hemisphere using a paired-pulse transcranial magnetic stimulation protocol (ppTMS). In a second study, we addressed the functional (resting state fMRI) and structural (fractional anisotropy on diffusion weighted imagery) intra- and interhemispheric connectivity of the contralesional PPC. We finally study the effect of an inhibitory modulation of the contralesional PPC (continuous theta-burst stimulation (cTBS)) on reaching parameters with the paretic upper limb in stroke patients.In the first study, we demonstrated an hyperexcitability of parieto-frontal connections in neglect patients when the conditioning stimulus was applied over the SPOC, especially when peripersonal neglect was severe. Connectivity between the aIPS and M1 was not different between patients and healthy controls and the severity of motor deficiency was not associated with connectivity. The neuroimaging study revealed that functional and structural connectivity from the contralesional PPC was altered in stroke patients, within the contralesional hemisphere but also to the lesioned hemisphere, in different ways depending on the PPC site considered. Functional connectivity showed some relationships with neglect severity but almost not with motor deficiency. Finally, the inhibition of the contralesional PPC lead by a cTBS protocol may increase lesioned M1 excitability and some spatiotemporal parameters of pointing movements.In conclusion, post-stroke patients showed wide modifications of cerebral connectivity of the contralesional PPC, both within the contralesional and toward the lesioned hemisphere. Whereas we identified links between connectivity and neglect severity, relationships were poorer with motor deficiency, certainly since this last is determined by several other factors. Finally, this work puts light on new perspectives of modulation protocols using non-invasive brain stimulation in stroke patients.
4

Dialogue cérébello-pariétal pendant l’adaptation motrice : le cas de la Dystonie / Cerebello-parietal dialog during motor adaptation in Dystonia

Richard, Aliénor 28 September 2016 (has links)
L'adaptation motrice permet d'ajuster la sortie motrice en réponse à des perturbations de l'environnement. Au début de l'adaptation, un processus stratégique conscient appelé recalibration a lieu. Ce processus implique le cervelet et le cortex pariétal postérieur. Il permet de réduire les erreurs motrices en se basant sur le retour sensoriel. Les patients dystoniques ont des altérations du traitement de l'information somatosensorielle. Nous avons fait l'hypothèse que cela devait entrainer des anomalies d'adaptation au cours de la phase de recalibration. En utilisant l'imagerie par résonnance magnétique (IRMf) et la magnétoencéphalographie (MEG), nous avons enregistré l'activité cérébrale chez des patients ayant une crampe de l'écrivain et chez des volontaires sains, alors qu'ils réalisaient une tâche de pointage avec ou sans perturbation visuelle associée. L'étude en IRMf a révélé l'implication d'un réseau cérébello-pariétal postérieur dans la détection des erreurs motrices. Ce réseau était hypoactif chez les patients qui compensaient en recrutant un réseau alternatif plus cognitif mettant en jeu la mémoire visuo-spatiale et la représentation cognitive de la main. La MEG nous a permis d'analyser la dynamique temporelle des activations et de montrer en particulier que la préparation du mouvement est déjà anormale chez les patients; de réaliser une analyse fréquentielle de la communication cérébello-corticale. Cette analyse a révélé un défaut de cohérence dans la bande gamma, entre le cervelet et le cortex moteur et prémoteur ainsi qu'avec le cortex pariétal postérieur. L'ensemble de nos résultats suggère un désordre constitutionnel de ce réseau dans la dystonie. / Dystonia is a movement disorder characterized by prolonged muscle contractions causing involuntary repetitive twisting movements and abnormal postures. Motor adaptation shapes the motor output according to the changes in the environment. At its early stage, motor adaptation involves a strategic conscious process called “recalibration” that minimizes the perturbation and reduces the motor error based on online integration of sensory feedback. Sensorimotor processing is impaired in dystonia and we hypothesized that this may lead to deficits of the “recalibration” phase during motor adaptation. We used magnetoencephalography (MEG) and functional magnetic resonance imagery (fMRI) to record brain activation in patients with writer’s cramp and healthy volunteers using a classical rotation learning task. The fMRI study revealed that the cerebello-parietal network was directly implicated in motor error detection. In writer’s cramp, this network was underactivacted and patients relied more on cognitive networks based on visuospatial memory and cognitive representations of the hand. With MEG, (1) we reconstructed the temporal dynamic of activations in the cerebello-parietal network and demonstrated abnormal movement preparation in writer’s cramp patients; (2) we realized a spectral analysis of the cerebello-parietal communication. This analysis revealed decreased gamma coherence between the cerebellum, and the premotor and motor cortices and with posterior parietal cortex. All of our data suggest an underlying disorder of this network in dystonia.
5

Atténuation des réafférences visuelles de la main dans le cortex pariétal lors d’un mouvement d’atteinte vers une cible.

Benazet, Marc January 2016 (has links)
Résumé : Il semble que le cerveau atténuerait les stimuli provenant de nos actions par rapport aux stimuli d’origine externe, ceci afin d’augmenter la pertinence des informations environnementales. Lors de la production d’un mouvement, la copie de la commande motrice serait utilisée pour anticiper les conséquences sensorielles. Les conséquences sensorielles prédites permettraient ainsi d’atténuer les réafférences réelles du mouvement. Plusieurs évidences montrent que l’activité corticale liée aux réafférences somatosensorielles et auditives est atténuée lorsque celles-ci résultent de nos propres mouvements par rapport à lorsqu’elles proviennent d’une cause externe. L’étude présentée dans ce mémoire a investigué l’existence d’une atténuation des réafférences visuelles lors d’un mouvement d’atteinte du bras vers une cible. L’expérience consistait en une tâche de pointage de la main vers une cible visuelle, pendant laquelle l’activité EEG des sujets était enregistrée. L’intervalle de temps entre la position réelle de la main et le curseur visuel associé à celle-ci était manipulé. De fait, le retour visuel était fourni soit en temps réel soit avec un retard de 150 ms. Le délai créait ainsi un décalage entre les conséquences visuelles prédites et réelles du mouvement. Les résultats montrent que l’amplitude de la composante N1 du Potentiel Évoqué Visuel (PEV) associé au retour visuel de la main était réduite dans le cortex pariétal lorsque le retour visuel était fourni en temps réel par rapport à lorsqu’il était présenté en retard. Conséquemment, ces données suggèrent que les réafférences visuelles du membre en mouvement sont atténuées au niveau cortical lorsqu’elles correspondent aux prédictions. L’association des résultats comportementaux et électrophysiologiques supportent également d’autres études qui montrent que les processus sensorimoteurs sont plus fins que la perception consciente. À la lumière de la littérature, la modulation de la composante N1 enregistrée aux électrodes pariéto-occipitales suggère l’implication des régions pariétales dans l’intégration des retours sensoriels et des prédictions motrices. En discussion, nous proposons que les retours visuels liés au contrôle en ligne du membre soient modulés au niveau pariétal en raison des prédictions motrices cérébelleuses, à l’instar des retours tactiles. / Abstract : It is well established that the cortical processing of somatosensory and auditory signals is attenuated when they result from self-generated actions as compared to external events. This phenomenon is thought to result from an efference copy of motor commands used to predict the sensory consequences of an action through a forward model. The present work examined whether attenuation also takes place for visual reafferent signals from the moving limb during voluntary reaching movements. To address this issue, EEG activity was recorded in a condition in which visual feedback of the hand was provided in real time and compared to a condition in which it was presented with a 150 ms delay, thus creating a mismatch between the predicted and actual visual consequences of the movement. Results revealed that the amplitude of the N1 component of the visual ERP evoked by hand visual feedback over the parietal cortex was significantly smaller when presented in real time as compared to when it was delayed. These data suggest that the cortical processing of visual reafferent signals is attenuated when they are correctly predicted, likely as a result of a forward model.
6

Architecture du contrôle cognitif au sein du cortex cérébral dans la schizophrénie

Barbalat, Guillaume 09 November 2009 (has links) (PDF)
Le but de cette thèse est d'investiguer l'organisation fonctionnelle du contrôle cognitif au sein du cortex préfrontal latéral dans la schizophrénie. Chez le sujet sain, Koechlin et coll. (Science, 2003) ont montré que le cortex préfrontal latéral était structuré en une cascade de processus de contrôle allant des régions antérieures aux régions postérieures, intégrant respectivement les informations épisodiques (événements antérieurs) et contextuelles (le contexte immédiat de l'action) au choix de l'action en réponse à un stimulus externe. En utilisant le paradigme expérimental de Koechlin et coll. en IRM fonctionnelle, nous avons investigué l'architecture fonctionnelle du contrôle cognitif au sein du cortex latéral préfrontal chez 15 patients schizophrènes et 14 sujets contrôles appariés. Dans une première étude, nous avons trouvé que les patients schizophrènes présentaient un déficit sélectif du contrôle contextuel associé à une hypoactivation des régions postérieures préfrontales, expliquant la désorganisation du discours et du comportement observés chez ces patients. Par ailleurs, les patients schizophrènes hyperactivaient leurs régions rostrales du cortex préfrontal latéral pendant le contrôle des informations de nature épisodique, ce que nous avons interprété comme une tentative de compensation infructueuse des dysfonctions du contrôle contextuel. Dans une seconde étude, nous avons montré que les patients schizophrènes présentaient également une perturbation du traitement top-down des informations de nature épisodique, liée à une dysconnectivité des régions rostrales vers les régions caudales du cortex préfrontal latéral.
7

"What" and "Where" in the intraparietal sulcus : an fMRI study of object identity and location in visual short-term memory

Harrison, Amabilis Helen January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
8

Contrôle du regard : mécanismes et substrats neuronaux de l’adaptation des mouvements oculaires saccadiques chez l’homme / Control of gaze : mechanisms and neural substrates of saccadic adaptation in Human

Panouillères, Muriel 12 July 2011 (has links)
« - Comment apprécions-nous la complexité du monde qui nous entoure ?- En bougeant nos yeux !- Pourquoi ?- Parce qu’une perception visuelle efficace (avec une acuité maximale !) nécessite de placer l’image des éléments pertinents du champ visuel au niveau d’une petite partie de notre rétine : la fovéa. » Les saccades oculaires sont les mouvements les plus rapides que peut produire notre organisme et sont malgré tout très précises. Le contrôle de ces mouvements représente un défi pour notre cerveau. En effet, ces saccades sont tellement rapides qu’aucune information visuelle ne peut modifier leur trajectoire en cours d’exécution. Mais alors, de quels moyens dispose notre cerveau pour maintenir ces performances tout au long de notre vie? En cas d’imprécision répétée, des mécanismes vont progressivement modifier l’amplitude de nos saccades oculaires afin d’en rétablir la précision. Cette adaptation saccadique repose sur des modifications centrales plastiques. Ce travail de thèse a comme vocation d’élucider les caractéristiques de l’adaptation saccadique chez l’homme. Des approches complémentaires ont permis d’étudier d’une part, l’adaptation des deux grandes catégories de saccades, réactives et volontaires, et d’autre part, l’adaptation en diminution et en augmentation d’amplitude. Nos données permettent de disséquer les mécanismes d’adaptation saccadique dans leur complexité et de mettre en évidence des structures neuronales indispensables à leur mise en place. Notre travail constitue également le support pour le développement de nouvelles procédures de rééducation, basées sur la plasticité oculomotrice. / “- How can we appreciate the complexity of the surrounding word? - By moving our eyes! - Why? - Because an efficient visual perception (with a maximal acuity!) necessitates placing the image of pertinent element from the visual scene at the level of a small part of our retina: the fovea.” Ocular saccades are the fastest movements our organism can produce and they are also highly precise. The control of these movements is a challenge for our brain. Indeed, these saccades are so fast that no visual information can be used during their execution to modify their trajectory. But then, what means does our brain have to maintain these performances all life long? In case of repeated inaccuracies, some mechanisms will progressively modify the amplitude of our ocular saccades in order to restore accuracy. This saccadic adaptation relies on central plastic modifications. The work of this doctorate has the vocation to elucidate the characteristics of saccadic adaptation in Human. Complimentary approaches allowed to study on one side, the adaptation of the two main saccade categories, reactive saccades and voluntary saccades, and on another side, the adaptation decreasing and increasing saccade amplitude. Our data dissects the complexity of mechanisms underlying saccadic adaptation and highlights the neural substrates necessary for these adaptive changes to take place. Our work constitutes also the basis for the development of new rehabilitation procedures, usingoculomotor plasticity.
9

Étude per-opératoire par stimulation électrique directe des représentation sensorimotrices corticales et cérébelleuses chez l'homme / Per-operative investigation with direct electrical stimulation of cortical and cerebellar sensorimotor representations in humans

Mottolese, Carmine 21 December 2013 (has links)
Durant les dernières décennies, le système moteur a été largement étudié. Pourtant, bien des zones d'incertitudes persistent concernant d'une part la nature des circuits neuronaux de haut niveau impliqués dans l'émergence des sentiments d'intention ou de conscience motrice et d'autre part l'organisation des structures cérébrales de bas-niveau impliquées dans l'expression de ces sentiments. Il a été suggéré que le cortex pariétal et l'aire motrice supplémentaire pourraient jouer un rôle dans la génération des intentions motrices, alors que le cortex prémoteur pourrait plutôt sous-tendre la conscience du geste. Cela étant, les processus exacts implémentés dans chacune de ces régions, la façon dont elles interagissent fonctionnellement et la nature des signaux qu'elles échangent avec les structures sensorimotrices considérées de bas-niveau demeurent méconnus. Il est établi que ces structures bas-niveau, dont le cortex moteur primaire et le cervelet, contiennent des cartes sensorimotrices organisées de manière topographique. Cependant, l'organisation fine de cette topographie et la nature des interactions entre les différentes cartes restent à définir. Dans ce travail de thèse, j'ai utilisé la stimulation électrique directe chez des patients opérés de tumeurs et malformations cérébrales pour explorer la manière dont les multiples représentations motrices sont organisées et pour identifier les régions responsables de l'émergence des sentiments d'intention et de conscience motrice. J'ai alors pu montrer, en particulier, l'existence de cartes motrices multiples au sein des cortex moteur primaire et cérébelleux. Par ailleurs, j'ai pu identifier le rôle critique du cortex pariétal pour l'émergence du sentiment d'intention motrice et -sur la base de processus prédictifs- de la conscience d'agir. Par rapport à ce point, j'ai aussi pu mettre en évidence que le cortex prémoteur était impliqué, à travers un contrôle continu des prédictions pariétales, dans l'émergence d'une conscience d'agir non plus inférée mais véritable / During the last five decades, the motor system has been widely studied. Yet, little is known about the neural substrate of high-level aspects of movement such as intention and awareness and how these functions are related to low-level movement execution processes. It has been suggested that the parietal cortex and supplementary motor area are involved in generating motor intentions, while premotor cortex may play a role in the emergence of motor awareness. However, the precise mechanisms implemented within each of these areas, the way they interact functionally and the nature of the signals conveyed to primary sensory and motor regions is far from being understood. Furthermore, intention and awareness of movement are also influenced by peripheral information coming from the skin, muscles and joints, and this information must be integrated to produce smooth, accurate and coordinated motor actions. Cortical and subcortical structures such as the primary motor cortex and the cerebellum are known to contain motor maps thought to contribute to motor control, learning and plasticity, but the intrinsic organization of these maps and the nature of their reciprocal relations are still unknown. In this thesis I used Direct Electrical Stimulation in patients undergoing brain surgeries to investigate how multiple motor representations are organized and identify the regions responsible for the emergence of conscious motor intention and awareness. I showed, in particular, the existence of multiple efferent maps within the cerebellum and the precentral gyrus. Furthermore, I identified the critical role of the parietal cortex for the emergence of conscious intention and -based on predictive processes- motor awareness. I also provided evidence that the premotor cortex is involved in "checking" parietal estimations, thus leading to a sense of "veridical awareness"
10

"What" and "Where" in the intraparietal sulcus : an fMRI study of object identity and location in visual short-term memory

Harrison, Amabilis Helen January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Page generated in 0.0563 seconds