• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 9
  • 9
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

The origin and dynamic interaction of solar magnetic fields

Wilmot-Smith, Antonia January 2008 (has links)
The dynamics of the solar corona are dominated by the magnetic field which creates its structure. The magnetic field in most of the corona is ‘frozen’ to the plasma very effectively. The exception is in small localised regions of intense current concentrations where the magnetic field can slip through the plasma and a restructuring of the magnetic field can occur. This process is known as magnetic reconnection and is believed to be responsible for a wide variety of phenomena in the corona, from the rapid energy release of solar flares to the heating of the high-temperature corona. The coronal field itself is three-dimensional (3D), but much of our understanding of reconnection has been developed through two-dimensional (2D) models. This thesis describes several models for fully 3D reconnection, with both kinematic and fully dynamic models presented. The reconnective behaviour is shown to be fundamentally different in many respects from the 2D case. In addition a numerical experiment is described which examines the reconnection process in coronal magnetic flux tubes whose photospheric footpoints are spun, one type of motion observed to occur on the Sun. The large-scale coronal field itself is thought to be generated by a magnetohydrodynamic dynamo operating in the solar interior. Although the dynamo effect itself is not usually associated with reconnection, since the essential element of the problem is to account for the presence of large-scale fields, reconnection is essential for the restructuring of the amplified small-scale flux. Here we examine some simple models of the solar-dynamo process, taking advantage of their simplicity to make a full exploration of their behaviour in a variety of parameter regimes. A wide variety of dynamic behaviour is found in each of the models, including aperiodic modulation of cyclic solutions and intermittency that strongly resembles the historic record of solar magnetic activity.
22

Unsteady hydromagnetic chemically reacting mixed convection MHD flow over a permeable stretching sheet embedded in a porous medium with thermal radiation and heat source/sink

Machaba, Mashudu Innocent 18 May 2018 (has links)
MSc (Mathematics) / Department of Mathematics and Applied Mathematics / The unsteady hydromagnetic chemically reacting mixed convection MHD ow over a permeable stretching sheet embedded in a porous medium with thermal radiation and heat source/sink is investigated numerically. The original partial di erential equations are converted into ordinary di erential equations by using similarity transformation. The governing non-linear partial di erential equations of Momentum, Energy, and Concentration are considered in this study. The e ects of various physical parameters on the velocity, temperature, and species concentration have been discussed. The parameters include the Prandtl number (Pr), Magnetic parameter (M), the Schmidt number (Sc), Unsteady parameter (A), buoyancy forces ratio parameter (N), Chemical reaction (K), Radiation parameter (Nr), Eckert number (Ec), local heat source/sink parameter (Q) and buoyancy parameter due to temperature ( ). The coe cient of Skin friction and Heat transfer are investigated. The coupled non-linear partial di erential equations governing the ow eld have been solved numerically using the Spectral Relaxation Method (SRM). The results that are obtained in this study are then presented in tabular forms and on graphs and the observations are discussed. / NRF
23

High Magnetic Field Neutron Stars : Cyclotron Lines and Polarization

Maitra, Chandreyee January 2013 (has links) (PDF)
This thesis concerns with the study of X-ray binaries which are gravitationally bound systems consisting of a compact object (either a neutron star or a black hole) and usually a non degenerate companion star, both rotating around the common centre of mass. The compact star shines brightly in the X-ray regime. Emission from these systems are powered by accretion which is the most radioactively efficient mechanism known in the universe by the release of gravitational potential energy when matter from the companion star falls on the compact object. Accretion onto high magnetic field neutron stars are special as the magnetic field plays a crucial role in governing the dynamics of gas flow and the flow of the matter close to the compact object. The radiation emitted from these systems are anisotropic and for a distant observer, the intensity is modulated at the spin period of the neutron star, hence these objects are called accretion powered pulsars. The angular pattern of the emitted radiation is also highly anisotropic and depends on the mass accreted and hence the luminosity. The beaming pattern commonly known as the pulse profiles exhibit a wide variety in the pulse shape and pulse fraction and vary with energy as well as intensity. They also exhibit cyclotron absorption features in their energy spectrum which are a direct probe to the magnetic field geometry of these systems. This thesis is dedicated to the study of the magnetic field and emission geometry of accretion powered pulsars through the pulse phase resolved studies of the cyclotron absorption features which are a direct probe of the magnetized plasma. In order to study these features in detail broadband continuum modeling of the energy spectrum is done, taking care of all other factors which may smear the pulse phase dependence. Another prerequisite for detailed continuum modeling is accounting for the low absorption dips in the pulse profiles of many these sources. The dips are presumably formed by phase locked accretion stream causing partial covering absorption when the stream is along our line of sight towards the emission region. Studying the pulse phase dependence of this partial covering absorber also provides us with important clues on the local environment of the neutron star and the structure of the accretion stream. All of these studies are performed with data from the broadband and most sensitive instruments onboard the Japanese satellite Suzuki. Lastly we provide estimates of the polarization expected to be detected from these sources by a Thomson scattering polarimeter being developed to observe the polarization of X-rays in the energy range of 5--30 keV. Along with the X-ray pulsars, we also make an estimate of the likelihood of detection of X-ray polarization from black hole X-ray binaries in different spectral states. This is a particularly interesting topic as it will play a crucial role in providing additional handles on the magnetic field geometry in accretion powered pulsars as well as constrain the fundamental parameters of a black hole like its spin.
24

Magnetohydrodynamic turbulence modelling: application to the dynamo effect / Modélisation de la turbulence magnétohydrodynamique: application à l'effet dynamo

Lessinnes, Thomas 21 May 2010 (has links)
La magnétohydrodynamique (MHD) est la science et le formalisme qui décrivent les mouvements d'un fluide conducteur d'électricité. Il est possible que de tels mouvements donnent lieu à l'effet dynamo qui consiste en la génération d'un champ magnétique stable et de grande échelle. Ce phénomène est vraisemblablement à l'origine des champs magnétiques des planètes, des étoiles et des galaxies. <p><p>Il est surprenant qu'alors que les mouvements fluides à l'intérieur de ces objets célestes sont turbulents, les champs magnétiques généré soient de grande échelle spatiale et stables sur de longues périodes de temps. De plus, ils peuvent présenter une dynamique temporelle régulière comme c'est le cas pour le champ magnétique solaire dont la polarité s'inverse tous les onze ans. <p><p>Décrire et prédire les mouvements d'un fluide turbulent reste l'un des problèmes les plus difficiles de la mécanique classique. <p>%La description aussi bien analytique que numérique d'un fluide hautement turbulent est d'une effroyable complexité, si pas tout simplement impraticable. Dans cette situation, <p>Il est donc utile de construire des modèles aussi proches que possible du système de départ mais de moindre complexité de sorte que des études théoriques et numériques deviennent envisageables.<p><p>Deux approches ont été considérées ici. D'une part, nous avons développé des modèles présentant un très petit nombre de degrés de liberté (de l'ordre de la dizaine). Une étude analytique est alors possible. Ces modèles ont une dépendance en les paramètres physiques - nombres de Reynolds cinétique et magnétique et injection d'hélicité - qualitativement similaire aux dynamos célestes et expérimentales.<p><p>D'autre part, les modèles en couches permettent de caractériser les transferts d'énergie entre les structures de différentes tailles présentes au sein du champ de vitesse. Nous avons développé un nouveau formalisme qui permet d'étudier aussi les échanges avec le champ magnétique. <p><p>De plus, nous proposons une étude de la MHD dans le cadre de la décomposition hélicoïdale des champs solénoïdaux - une idée similaire à la décomposition de la lumière en composantes polarisées et que nous sommes les premiers à appliquer à la MHD. Nous avons montré comment exploiter cette approche pour déduire systématiquement des modèles simplifiés de la MHD. En particulier, nos méthodes multiplient le nombre de situations descriptibles par les modèles en couche comme par exemple le problème anisotrope de la turbulence en rotation. Elles permettent aussi de construire des modèles à basse dimension en calquant les résultats de simulations numériques directes. Ces modèles peuvent alors être étudiés à moindre coûts.<p><p><p>_______________<p><p><p><p><p>Magnetohydrodynamics (MHD) is both the science and the formalism that describe the motion of an electro-conducting fluid. Such motion may yield the dynamo effect consisting in the spontaneous generation of a large scale stationary magnetic field. This phenomenon is most likely the reason behind the existence of planetary, stellar and galactic magnetic fields. <p>\ / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0288 seconds