• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design of Antennas for Radio Frequency Identification and Analysis of Power Coupling Effects

Wang, Pai-Chieh 25 July 2005 (has links)
In this paper, we propose tag antennas and reader antennas, which are suitable for radio frequency identification system. Antennas operating in the ISM and the UHF bands are designed. The antenna dimensions are minimized by employing the meander-line technology. Adopting the concepts of Yagi-Uda antennas, We use parasites to increase the antenna gain and to create an end-fire radiation pattern. The fact that the design comes without a ground plane can achieve cost down of the antenna. Higher antenna gains allow a greater effective read-zone distance. Also, the directional radiation pattern eliminates the degradation of performance due to multi-path loss. The design of tag antennas shows good performances in terms of both cost and antenna characteristics for radio frequency identification systems. The reader antennas are designed. Etching a slit in a square patch can achieve the requirement of circular polarization. It can effectively reduce the polarization mismatch when the tags are point to different orientation. Therefore the reliability of system operation will be improved. The antenna performance is measured by the experiments. Moreover, it will be compared with the simulation. In the latter part of paper, the simulation of the power coupling will be carried out. According to the result of power coupling simulation, we analyze and discuss which factor will affect the reliability of the identification. Identification failure will be effectively avoided and a robust identification system can be built if the analyses are properly employed.
2

フェーズフィールドモデルを用いた変態‐熱‐応力連成解析の定式化

上原, 拓也, UEHARA, Takuya, 辻野, 貴洋, TSUJINO, Takahiro 04 1900 (has links)
No description available.
3

フェーズフィールドモデルによる析出相内部の応力変化と残留応力のシミュレーション

上原, 拓也, UEHARA, Takuya, 辻野, 貴洋, TSUJINO, Takahiro 06 1900 (has links)
No description available.
4

Structural optimization of actuators and mechanisms considering electrostatic-structural coupling effects and geometric nonlinearity / 静電-構造連成効果および幾何学的非線形性を考慮したアクチュエータと機構の構造最適化

Kotani, Takayo 24 September 2014 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18585号 / 工博第3946号 / 新制||工||1606(附属図書館) / 31485 / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 西脇 眞二, 教授 田畑 修, 教授 松原 厚 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
5

FUEL COMPOSITION TRANSIENTS IN SOLID OXIDE FUEL CELL GAS TURBINE HYBRID SYSTEMS FOR POLYGENERATION APPLICATIONS

Harun, Nor Farida 11 1900 (has links)
The potential of Solid Oxide Fuel Cell Gas Turbine (SOFC/GT) hybrid systems for fuel flexibility makes this technology greatly attractive for system hybridization with various fuel processing units in advanced power generation systems and/or polygeneration plants. Such hybrid technologies open up the possibility and opportunities for improvement of system reliabilities and operabilities. However, SOFC/GT hybrid systems have not yet reached their full potential in term of capitalizing on the synergistic benefits of fuel cell and gas turbine cycles. Integrating fuel cells with gas turbine and other components for transient operations increases the risk for exposure to rapid and significant changes in process dynamics and performance, which are primarily associated with fuel cell thermal management and compressor surge. This can lead to severe fuel cell failure, shaft overspeed, and gas turbine damage. Sufficient dynamic control architectures should be made to mitigate undesirable dynamic behaviours and/or system constraint violations before this technology can be commercialized. But, adequate understanding about dynamic coupling interactions between system components in the hybrid configuration is essential. Considering this critical need for system identification of SOFC/GT hybrid in fuel flexible systems, this thesis investigates the dynamic performance of SOFC/GT hybrid technology in response to fuel composition changes. Hardware-based simulations, which combined actual equipment of direct-fired recuperated gas turbine system and simulated fuel cell subsystem, are used to experimentally investigate the impacts of fuel composition changes on the SOFC/GT hybrid system, reducing potentially large inaccuracies in the dynamic study. The impacts of fuel composition in a closed loop operation using turbine speed control were first studied for the purpose of simplicity. Quantification of safe operating conditions for dynamic operations associated with carbon deposition and compressor stall and surge was done prior to the execution of experimentation. With closed loop tests, the dynamic performance of SOFC/GT hybrid technology due to a transition in gas composition could be uniquely characterized, eliminating the interactive effects of other process variables and disturbances. However, for an extensive system analysis, open loop tests (without turbine speed control) were also conducted such that potential coupling impacts exhibited by the SOFC/GT hybrid during fuel transients could be explored. Detailed characterization of SOFC/GT dynamic performance was performed to identify the interrelationship of each fuel cell variable in response to fuel composition dynamics and their contributions to operability of the system. As a result of lowering LHV content in the fuel feed, which involved a transition from coal-derived syngas to humidified methane composition in the SOFC anode, the system demonstrated a dramatic transient increase in fuel cell thermal effluent with a time scale of seconds, resulting from the conversion of fuel cell thermal energy storage into chemical energy. This transient was highly associated with the dynamics of solid and gas temperatures, heat flux, heat generation in the fuel cell due to perturbations in methane reforming, water-gas shifting, and electrochemical hydrogen oxidation. In turn, the dramatic changes in fuel cell thermal effluent resulting from the anode composition changes drove the turbine transients that caused significant cathode airflow fluctuations. This study revealed that the cathode air mass flow change was a major linking event during fuel composition changes in the SOFC/GT hybrid system. Both transients in cathode air mass flow and anode composition significantly affected the hybrid system performance. Due to significant coupling between fuel composition transitions and cathode air mass flow changes, thermal management of SOFC/GT hybrid systems might be challenging. Yet, it was suggested that modulating cathode air flow offered promise for effective dynamic control of SOFC/GT hybrid systems with fuel flexibility. / Thesis / Doctor of Philosophy (PhD)
6

Linear and ultrafast response of individual multi-material nanoparticles / Réponse linéaire et ultra-rapide de nanoparticules individuelles multi-matériaux

Lombardi, Anna 30 September 2013 (has links)
Les propriétés optiques et vibrationnelles de nanoparticules métalliques individuelles ont été étudiées par spectroscopie par modulation spatiale (SMS), avec une attention particulière aux effets de forme, composition, environnement local, ainsi que de couplage inter-particule. La réponse optique de nanoparticules (métalliques au cœur-couronne métal-diélectrique) allongées et des particules bimétalliques (hétérodimères or-argent) a été mesuré et en suite interprétée grâce à une corrélation avec la caractérisation morphologique de la même particule obtenue par microscopie à transmission électronique et avec des simulations par éléments finis prenants en compte la réelle géométrie du nano-objet et le substrat. Une technique pompe sonde résolue en temps a été en suite utilisée pour étudier le profil Fano dans l'absorption d'une particule d'or au sein d'un hétérodimères or-argent. Sur une échelle de temps des quelques dizaines de picosecondes, les vibrations acoustiques multimodales de nanobipyramides d'or individuelles ont été optiquement détectées et caractérisées par rapport à un modèle élastique classique / Optical and vibrational properties of individual metal-based nanoparticles have been investigated by spatial modulation spectroscopy (SMS), focusing on their dependence on nano-object shape, composition, environment and inter-particle coupling. Quantitative investigations of the optical response, and in particular, the surface plasmon resonance (extinction cross-section amplitude, spectral position and linewidth) of elongated metal or metal-dielectric (gold nanorods, nanobipyramids with or without silica coating) and bimetallic (gold-silver heterodimers) nanoparticles deposited on a substrate have first been performed. The same nanoparticles were characterized by electron microscopy permitting quantitative interpretation of their optical response using finite element numerical simulations, taking into account the influence of the substrate. Combining SMS microscopy with a high sensitivity femtosecond two-color pump-probe setup, the ultrafast dynamics of single nano-objects has been investigated. The Fano absorption profile of a gold nanoparticle within a single gold-silver heterodimer, a parameter not accessible by linear spectroscopy, was directly measured. On a picosecond time-scale, multimodal acoustic vibrations of single gold nanobipyramids were optically lunched and detected, and their features compared to a model based on continuum elasticity

Page generated in 0.0705 seconds