• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molécules conjuguées pour le photovoltaïque organique : impact de la rigidification sur les propriétés des matériaux / Conjugated molecules for organic photovoltaics : Effect of the rigidification on material properties

Baert, François 02 October 2015 (has links)
Le développement du photovoltaïque organique(OPV), passe à la fois par des progrès technologiques et par l’élaboration de nouveaux matériaux photoactifs. Au sein des dispositifs se trouvent en général deux types de semi-conducteurs organiques, l’un accepteur d’électrons,l’autre donneur.Au cours de ce travail, différentes stratégies de rigidification par pontage covalent ont été appliquées à trois familles de donneurs moléculaires afin d’en étudier l’impact sur leurs propriétés électroniques. Dans un premier temps, deux séries de dérivés pontés du quaterthiophène substitué en positions terminales par des groupements dicyanovinyles ont été synthétisées. La présence d’un pont méthylène au niveau du bithiophène central induit un décalage du spectre d’absorption vers les faibles énergies en élevant le niveau HOMO de la molécule. Leur potentiel comme matériaux donneurs a, par la suite, été évalué au sein de dispositifs solaires. Ainsi, selon la longueur des chaînes alkyles introduites sur le pont, des rendements de photoconversion de 2% à 3,4% sont atteints en cellules bicouches. Puis, dans un second temps, l’utilisation de l’hétérocycle rigide thiéno[2,3-b]indole a permis de concevoir la plus petite molécule push-pull à atteindre 1%d’efficacité. Un rendement de 3,1% est obtenu lorsque le système conjugué est étendu d’une unité thiophène. Enfin, un donneur moléculaire construit autour d’un dithién-2-yldicyanoéthylène ponté, fonctionnalisé en périphérie par des unités triphénylamine, conduit à des cellules moins performantes (0,3%) que son homologue non ponté (1,1%). / The development of the so-called organic photovoltaics (OPVs) still requires technological as well as chemical advances through the elaboration of new photoactive materials. Active layer of devices is typically composed of two organic semiconductors, one electron-acceptor and one electron-donor respectively. During this work, rigidification by covalent bridging was applied to three different kinds of molecular donors to assess its impact on the materials electronic properties. First, two series of covalently bridged dicyanovinyl(DCV) end-capped quaterthiophene derivatives have been synthesized. A methylene bridge on the central bithiophene unit leads to a significant bathochromic shift of the absorption spectrum associated with a raising of the HOMO level. Their potential as donor material has been evaluated in solar cells. Power conversion efficiencies ranging from 2% to 3.4% can be achieved in bilayers structures according to the length of the alkyl chains introduced on the bridged bithiophene moiety. Then, the use of a rigid thieno[2,3-b]indoleheterocycle allowed us to design, synthesize and characterize the smallest push-pull molecule able to reach 1% efficiency. It is worth noting that extending the conjugation length of this molecule by adding one thiophene unit leads to an increase of the efficiency up to 3.1%. Finally, a molecular donor built from a bridged dithienyldicyanoethylene core functionalized at both sides by a triphenylamine unit was studied and led to less efficient OPV cells (0.3%) than its unbridged counterpart (1.1%).
2

Highly Constrained Dithienylethenes

Kleinwächter, Michael 11 March 2019 (has links)
Diarylethene sind molekulare Schalter, welche sich unter Einwirkung von Licht zwischen einem offenen und einem geschlossenen Isomer umwandeln. Die Effizienz dieser beiden Photoreaktionen ist von verschiedenen Parametern abhängig, welche bisher nur unzureichend verstanden sind. Ein entscheidender Faktor für die Hinreaktion ist das Verhältnis zweier Konformere, von denen jedoch nur eines photochemisch aktiv ist. In der vorliegenden Arbeit wird eine neue Klasse von Diarylethenen beschrieben, in welcher die aktive Konformation durch kovalente Verbrückungen unterschiedlicher Länge stabilisiert wird. Gleichzeitigeröffnet sich ein zusätzlicher Reaktionspfad in Form einer Doppelbindungsisomerisierung. Es stellte sich heraus, dass bei geeigneter Verbrückungslänge das zyklisierte Isomer mit ungewöhnlich hoher Effizienz gebildet wird, während die Effizienz der Ringöffnung nicht beeinflusst wird. Der Mechanismus und die Dynamik der Photoreaktion wurden anhand ausgewählter Vertreter durch Ultrakurzzeitspektroskopie untersucht. Weiterhin konnte gezeigt werden, dass der Ringschluss auch durch elektrochemische Oxidation oder Reduktion erfolgen kann. Die vorgestellten Systeme agieren bei direkter photochemischer Anregung wie herkömmliche Diarylethene nur im Ringschluss/Ringöffnungsregime. Durch Tripletsensibilisierung kann jedoch eine selektive Z→E Isomerisierung erzielt werden, was diese Diarylethenklasse zu reversiblen 3-Zustandssystemen erweitert. In Erweiterung des Projektes wurde die Struktur des Diarylethens noch stärker fixiert. Nach vielseitigen Syntheseversuchen konnten zwei Vertreter dieser Klasse erhalten und photochemisch untersucht werden, wobei ein Umsatz zu etwa 60% zyklisiertem Isomer bei der Bestrahlung mit UV-Licht gefunden wurde. Zusammengefasst stellt die kovalente Verbrückung der Diarylethenstruktur eine erfolgreiche Strategie dar, um sowohl die Effizienz der Ringschlussreaktion zu steigern als auch photochrome Verbindungen mit drei Schaltzuständen zu kreieren. / Diarylethenes are molecular switches that interconvert reversibly between an open and a closed isomer by irradiation with light. The efficiency of both photochemical reactions depends on several parameters, which, so far, are only insufficiently understood. One important factor in the cyclization reaction is the presence of two conformations of the open isomer of which only one is photochemically active. In the current work, a new class of diarylethenes is presented, in which the active conformation is covalently stabilized by alkyl chains of different lengths. As the central double bond is not fixated, double bond isomerization emerges as an additional pathway in these annulated diarylethenes. In dependence of the chosen ring size both open isomers convert with increased efficiency to the closed isomer upon irradiation. The efficiency of the cycloreversion process remains unaffected. The mechanism and dynamic of the photoreaction were investigated for selected compounds using transient absorption spectroscopy. Furthermore, electrochemical studies revealed that both the E- and the Z-isomer cyclize rapidly upon anodic oxidation or cathodic reduction. In general, the photochemical reactivity of annulated diarylethenes parallels that of normal diarylethenes and takes place exclusively in the cyclization/cycloreversion regime if irradiated directly. However, it was demonstrated that a selective Z→E double bond isomerization is possible, thus implementing a 3-state photoswitchable system. In extension of the project, the structure of diarylethenes was further stiffened. Using diverse synthetic approaches, two members of this class could be obtained. Photochemical investigation showed a conversion to the closed isomer of 60% upon irradiation with UV-light. In brief, the covalent fixation of diarylethenes represents an attractive strategy to increase the efficiency of the photochemical cyclization and extent the scope of diarylethenes to 3-state photochromic systems.

Page generated in 0.0909 seconds