• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 478
  • 478
  • 108
  • 91
  • 71
  • 30
  • 26
  • 22
  • 20
  • 12
  • 11
  • 10
  • 5
  • 4
  • 3
  • Tagged with
  • 1624
  • 387
  • 298
  • 291
  • 252
  • 222
  • 208
  • 197
  • 182
  • 179
  • 169
  • 163
  • 151
  • 137
  • 127
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Effects of specimen geometry and coating on the thermo-mechanical fatigue of PWA 1484 superalloy

O'Rourke, Matthew Daniel 27 August 2014 (has links)
The single crystal superalloy PWA 1484 is used in hot section turbine blade applications due to its performance at high temperatures. In practice, the turbine blades are often coated in order to protect them from environmental degradation. However, under repeated cyclic loading, the coating may serve as a site for crack initiation in the blades. Fundamental out-of-phase (OP) thermo-mechanical fatigue (TMF) studies, primarily using uncoated solid cylindrical test samples, have previously examined both crack initiation and propagation in PWA 1484. In this work, mechanical strain-controlled OP TMF tests were performed on coated and uncoated specimens of a hollow cylindrical geometry in order to study the effects of both geometry and coating on the TMF crack initiation behavior. To accomplish this, it was necessary to create and analyze a modified gripping mechanism due to the unique geometry of the test samples, and as predicted by hand calculations and finite element analysis, these modifications proved to be successful. The TMF test results for the uncoated material were compared to those from previous studies under the same testing conditions, and it was found that the differences in geometry had a minimal impact on fatigue life. Comparisons of the results for the coated and uncoated material suggested that the coating may have offered a slight improvement in life, although insufficient results were available to determine whether these differences were statistically significant. Damage mechanisms resulting from different test conditions were also observed through microscopy on failed specimens.
342

Effect of Corrosive Environment on Fatigue Behavior of Nickel - Based Alloys

Mohamed, Aezeden 19 January 2011 (has links)
Nickel based alloys have been developed as a material offering superior general and localized corrosion resistance compared to the more traditionally used in chemical and oil plant in the most aggressive environment such as hydrochloric acid and ferric chloride. Hence the addition of Cr and Mo to Ni creates alloys with exceptional corrosion resistance in a diverse range of environments. This study examines the roles of Cr and Mo in the corrosion behavior of Ni alloys. The performance of three nickel-base alloys IN600, IN601 and C22 was examined in increasing saline solution severity of sodium chloride, concentrated hydrochloric acid and ferric chloride solution at pH = 0.0. The passive corrosion and breakdown behavior of these alloys suggests that Cr is the primary element influencing general corrosion resistance, while the repassivation potential is strongly dependent on the Mo content. This indicates that Cr plays a strong role in maintaining the passivity of the alloy, while Mo acts to stabilize the passive film after a localized breakdown event. Corrosion fatigue test results indicate that fatigue life of IN600, IN601 and C22 specimens tested in 3.5 % sodium chloride solution are essentially the same as for specimens tested in air. Test results also showed that for IN600, IN601 and C22 alloys, the number of cycles to failure was highest in air and sodium chloride solution, followed by specimens fatigued in hydrochloric acid, and was least in specimens fatigued in ferric chloride solution. No evidence of surface pitting was found on C22 specimens in all three solutions whereas IN600 and IN601 were both pitted. However, pits were generally larger in IN600 likely due to lower Cr content than in IN601.
343

Application of thermomechanical processing for the improvement of boundary configurations in commercially pure nickel

Li, Qiangyong 15 January 2009 (has links)
The effect of thermo-mechanical processing by deformation and annealing on the grain boundary configuration of commercially pure Ni-200 is reported in this thesis. Ni-200 is unalloyed, thus avoiding the complex effects associated with alloying elements on the formation and development of different types of grain boundaries. One step strain-recovery with strain levels in the range of 3% to 7.5% (with 1.5% intervals) and annealing temperatures in the range of 800ºC to 1000ºC (with 100ºC intervals) were used in processing. The effects of parameters such as strain level, annealing temperature, annealing time and grain growth on grain boundary configurations were studied. Using Orientation Image Microscopy (OIM) it was found that the Fsp (fraction of special grain boundaries) value of strained samples annealed in the range of 800ºC to 1000ºC began to increase after a critical length of time, after which the Fsp value increased quickly and becoming a maximum in 2~4 minutes. The length of the critical annealing time for the increase of Fsp was shorter in the material with the higher levels of strain at a constant annealing temperature. Also the critical annealing time was shorter when annealed at higher temperatures under a fixed level of strain. The Fsp value increased to 80% from an as received value of about 30% in the samples with varying strain levels. However, the Fsp values only increased from 30% to 45% in the material without strain. Due to grain boundary migration, the Fsp values increased with grain size and became a maximum during the heat treatment of the strained material. In the material without strain however even when grain growth occurred, limited improvement in Fsp values occurred showing that contribution of strain is very important to the formation of special boundaries. By varying the strain levels, annealing temperatures and times, material with high Fsp values in a wide range of grain size can be obtained. Under the present processing conditions used however, multi-cycle was not helpful to the improvement of Fsp. TEM observations indicated dislocation tangles occurred near the grain boundary of the 1x6% strained samples. These dislocation tangles decreased with time at 800˚C and were reduced considerably after 20 minutes. Thermodynamic and kinetic models were used in the calculations of twin density-grain size relationships. The results indicated that the contribution of strain is equivalent to the increase of grain boundary energy, which provided an extra driving force and improved probability of twin embryo formation.
344

Effect of Corrosive Environment on Fatigue Behavior of Nickel - Based Alloys

Mohamed, Aezeden 19 January 2011 (has links)
Nickel based alloys have been developed as a material offering superior general and localized corrosion resistance compared to the more traditionally used in chemical and oil plant in the most aggressive environment such as hydrochloric acid and ferric chloride. Hence the addition of Cr and Mo to Ni creates alloys with exceptional corrosion resistance in a diverse range of environments. This study examines the roles of Cr and Mo in the corrosion behavior of Ni alloys. The performance of three nickel-base alloys IN600, IN601 and C22 was examined in increasing saline solution severity of sodium chloride, concentrated hydrochloric acid and ferric chloride solution at pH = 0.0. The passive corrosion and breakdown behavior of these alloys suggests that Cr is the primary element influencing general corrosion resistance, while the repassivation potential is strongly dependent on the Mo content. This indicates that Cr plays a strong role in maintaining the passivity of the alloy, while Mo acts to stabilize the passive film after a localized breakdown event. Corrosion fatigue test results indicate that fatigue life of IN600, IN601 and C22 specimens tested in 3.5 % sodium chloride solution are essentially the same as for specimens tested in air. Test results also showed that for IN600, IN601 and C22 alloys, the number of cycles to failure was highest in air and sodium chloride solution, followed by specimens fatigued in hydrochloric acid, and was least in specimens fatigued in ferric chloride solution. No evidence of surface pitting was found on C22 specimens in all three solutions whereas IN600 and IN601 were both pitted. However, pits were generally larger in IN600 likely due to lower Cr content than in IN601.
345

Fracture processes in simulated HAZ microstructures of stainless steel

Chang, Chung-Shing January 2000 (has links)
No description available.
346

Influence of surface roughness on thermography measurement

Zhang, Cheng January 2014 (has links)
This university Bachelor's Thesis was performed to explore the influence of surface roughness on the thermography measurement. Thermography is a non-destructive testing method which can be used to detect cracks. However, it is hard to define how the surface roughness influences the emissivity and the result of a thermography measurement, as well as how the angle of the excitation source influences the result. Therefore, this work aims to define how the heating angle and surface roughness influence the thermography measurement, define the relationship between surface roughness and emissivity for the same crack, and define the influence of the angles which composed of the heating source, the direction of crack and the direction of surface roughness on thermography measurement. In this report, the theories of radiation and Signal-to-noise ratio (SNR) were explained, clearly. Also, two kinds of experiments were set up. One is focus on how the heating angle influence the thermography measurement, the other is focus on how the angle of the heating source, in relation to the crack direction and the direction of surface roughness, influence the SNR value. The conclusions of these experiments are that the heating of a crack increases as the angle decreases (from wide side to narrow side) and the angle ofincreases (from horizontal to vertical). Moreover, the SNR value decreases as the surface roughness increases. For the same surface roughness, the SNR value increases with increased crack angle (0°, 45° or 90°) and with decreased sample position angle (horizontal, 45°or vertical). What is more, the higher surface roughness, the larger the influence of the crack angle and the sample position angle. Finally, when the surface is polish, the crack angle and the sample position angle does not have any influence.
347

Detection of Sub-Millimeter Surface Cracks using Complementary Split-Ring Resonator

Albishi, Ali 13 July 2012 (has links)
Many interesting ideas have emerged from research on electromagnetic eld interactions with di erent materials. Analyzing such interactions has extracted some essential proper- ties of the materials. For example, extracting constitutive parameters such as permittivity, permeability, and conductivity, clari es a material's behavior. In general, the electromag- netic eld interacts with materials either in the far- eld or near- eld of a source. This study focuses on the principle of near- eld microwave microscopy for detection purposes. Many studies have focused on the use of an electrically small resonator, such as a split-ring resonator (SRR) and a complementary split-ring resonator (CSRR), to act as a near- eld sensor for material characterization and detection. At the resonance frequency, the electric and magnetic energy densities are enhanced dramatically at certain locations in the resonator. Any disturbance of the eld around such a resonator with a material under test causes the resonance frequencies to exhibit a shift that is used as an indicator of the sensor sensitivity. In this thesis, a single CSRR is used as a sensing element for detecting cracks in metal surfaces. Many microwave techniques have been developed for crack detection. However, these techniques have at least one of the following drawbacks: working at high frequencies, measurement setup complexity and cost, and low sensitivity. The rst part of this thesis presents a new sensor based on the complementary split-ring resonator (CSRR) that is used to detect sub-millimeter surface cracks. The sensing mechanism is based on perturbing the electromagnetic eld around an electrically small resonator, thus initiating a shift in the resonance frequency. Investigation of the current distribution on a CSRR at the resonance frequency shows the critical location at which the enhanced energy is concentrated. In addition, the current distribution demonstrates the sensing element in the CSRR. The sensor is simple to fabricate and inexpensive, as it is etched-out in the ground plane of a microstrip-line using printed circuit board technology. The microstrip-line excites the CSRR by producing an electric eld perpendicular to the surface of the CSRR. The sensor exhibits a frequency shift of more than 240 MHz for a 200 m crack. In the second part of this thesis, the sensitivity of the sensor is increased by lling the same crack with a dielectric material such as silicon oil. While using CSRR to scan a block with 200 m wide and 2 mm depth dielectric lled crack, the resonance frequency of the sensor shifts 435 MHz more than a case scanning a solid aluminum. Finally, the total Inductance of a CSRR for miniaturizing purposes is increased using either lumped or distributed elements. In this thesis, the designs and the results are validated experimentally and numerically.
348

Effect of crystallinity on crack propagation and mineralization of bioactive glass 45S5

Kashyap, Satadru 11 1900 (has links)
Bioactive glasses are a type of ceramic material designed to be used as bioresorbable therapeutic bone implants. Thermal treatment of bioactive glass ceramics dictates many important features such as microstructure, degree of crystallinity, mechanical properties, and mineralization. This study investigates the effects of temperature, time, and heating rates on the crystallization kinetics of melt cast bioactive glass 45S5. Bulk crystallization (three dimensional crystallite formation) was found to always occur in bulk bioactive glass 45S5 irrespective of the processing conditions. A comparative study of crack paths in amorphous and crystalline phases of bioactive glass 45S5 revealed crack deflections and higher fracture resistance in partially crystallized bioactive glass. Such toughening is likely attributed to different crystallographic orientations of crystals or residual thermal mismatch strains. Furthermore, in vitro immersion testing of partially crystalline glass ceramic revealed higher adhesion capabilities of the mineralized layer formed on amorphous regions as compared to its crystalline counterpart. / Materials Engineering
349

多孔質セラミックスの切欠き破壊強度のR曲線法による評価

田中, 啓介, TANAKA, Keisuke, 秋庭, 義明, AKINIWA, Yoshiaki, 北, 泰樹, KITA, Yasuki, 佐藤, 永次, SATO, Eiji 09 1900 (has links)
No description available.
350

Essays on Forecasting and Hedging Models in the Oil Market and Causality Analysis in the Korean Stock Market

Choi, Hankyeung 2012 August 1900 (has links)
In this dissertation, three related issues concerning empirical time series models for energy financial markets and the stock market were investigated. The purpose of this dissertation was to analyze the interdependence of price movements, focusing on the forecasting models for crude oil prices and the hedging models for gasoline prices, and to study the change in the contemporaneous causal relationship between investors' activities and stock price movements in the Korean stock market. In the first essay, the nature of forecasting crude oil prices based on financial data for the oil and oil product market is examined. As crack spread and oil-related Exchange-Traded Funds (ETFs) have enabled more consumers and investors to gain access to the crude oil and petroleum products markets, I investigated whether crack spread and oil ETFs were good predictors of oil prices and attempted to determine whether crack spread or oil ETFs were better at explaining oil price movements. In the second essay, the effectiveness of diverse hedging models for the unleaded gasoline price is examined using futures and ETFs. I calculated the optimal hedge ratios for gasoline futures and gasoline ETF utilizing several advanced econometric models and then compared their hedging performances. In the third essay, the contemporaneous causal relationship between multiple players' activities and stock price movements in the Korean stock market was investigated using the framework of a DAG model. The causal impacts of three players' activities in regard to stock return and stock price volatility are examined, concentrating on foreign investor activities. Within this framework, two Korean stock markets, the KSE and KOSDAQ markets, are analyzed and compared. Recognizing the global financial crisis of 2008, the change in casual relationships was examined in terms of pre- and post-break periods. In conclusion, when a multivariate econometric model is developed for multi-markets and multi-players, it is necessary to consider a number of attributes on data relations, including cointegration, causal relationship, time-varying correlation and variance, and multivariate non-normality. This dissertation employs several econometric models to specify these characteristics. This approach will be useful in further studies of the information transmission mechanism among multi-markets or multi-players.

Page generated in 0.0215 seconds