• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 10
  • Tagged with
  • 28
  • 28
  • 28
  • 13
  • 13
  • 9
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sinalização do óxido nítrico sobre a regulação do Metabolismo Ácido das Crassuláceas (CAM) em Guzmania monostachia / Crassulacean Acid Metabolism (CAM) regulation by nitric oxide in Guzmania monostachia

Mioto, Paulo Tamaso 06 July 2016 (has links)
Guzmania monostachia é uma bromélia-tanque epífita que apresenta uma alta plasticidade fotossintética, sendo capaz de regular positivamente o metabolismo ácido das crassuláceas (CAM) em resposta ao déficit hídrico. Também foi visto para essa espécie que o incremento do CAM se dá de forma diferente ao longo do comprimento da folha, sendo mais intenso na região apical do que na basal. Trabalhos anteriores indicaram que o óxido nítrico (NO) parece estar envolvido na regulação do CAM, mas nada se sabe dos mecanismos pelos quais isso ocorre. Uma vez que parecem não existir receptores específicos de NO, acredita-se que ele seja capaz de se ligar diretamente às proteínas, através de um processo conhecido como nitrosilação. O presente trabalho visou determinar se o NO estaria atuando na regulação do CAM em G. monostachia através da nitrosilação de proteínas relacionadas a esse metabolismo. Para tanto, foram feitos três desenhos experimentais. No primeiro, folhas destacadas de G. monostachia foram mantidas por 7 dias em água (controle) ou em uma solução contendo 30% de PEG (déficit hídrico). Durante esse período, foram monitorados parâmetros indicativos de estresse (porcentagem de água, potencial hídrico, além dos teores de clorofilas, carotenoides e proteínas), CAM (atividade da fosfoenolpiruvato carboxilase - PEPC - e acúmulo noturno de malato e citrato) e emissão de NO. Todas as análises foram feitas nas porções basal e apical das folhas. Ao final dos 7 dias de escassez hídrica, também foram feitas dosagens de nitrosotióis totais e a visualização em gel de proteínas nitrosiladas na porção apical. O segundo experimento visou verificar a modulação da atividade de enzimas pela nitrosilação. Para tanto, extratos proteicos de folhas de G. monostachia foram incubados com glutationa reduzida (GSH) ou S-nitrosoglutationa (GSNO) para, em seguida,verificar diferenças nas atividades das enzimas PEPC, malato desidrogenase (MDH), ascorbato peroxidase (APX), catalase (CAT) e isocitrato desidrogenase dependente de NADP+ (NADP-ICDH). No terceiro experimento foi feita a aplicação do sequestrador de NO 2-(4-carboxifenil)-4,4,5,5-tetrametilimidazolina-1-oxil-3-óxido (cPTIO) ou de NO gasoso em folhas destacadas mantidas em PEG ou água, respectivamente. Os resultados mostraram que o aumento do CAM se dá seis dias após o início do tratamento de déficit hídrico, concomitantemente com o aumento na produção de NO. Esses dois fenômenos ocorreram somente na porção apical da folha. A quantidade de proteínas nitrosiladas, no entanto, diminuiu em resposta ao déficit hídrico nesta porção, indicando que o aumento na emissão de NO pode ser oriundo de uma desnitrosilação de proteínas. De fato, a atividade de três (PEPC, APX e NADP-ICDH) das cinco enzimas analisadas mostraram uma diminuição em resposta ao tratamento com GSNO. Dessa forma, o NO parece não se ligar diretamente às enzimas do CAM para regular sua atividade. Mesmo assim, a aplicação de NO gasoso causou um aumento em todos os parâmetros relacionados ao CAM após 5 dias, sugerindo algum tipo de controle transcricional sobre genes relacionados a esse tipo de fotossíntese / Guzmania monstachia is an epiphytic tank-bromeliad capable of up-regulating CAM under water deficit. Moreover, the increase in CAM is stronger in the apical portion of the leaf, when compared to the base. Nitric oxide (NO) is a signaling molecule involved in the regulation of CAM, but the mechanisms underlying this phenomenon are still largely unknown. NO is capable of interacting with proteins through a process known as nitrosylation. Here, we investigated whether NO could regulate CAM by protein nitrosylation. In order to do so, we performed three experiments. In the first one, detached leaves were maintained for 7 days in water or in a solution containing 30% of poliethylene glycol 6000 (PEG). During this period, the water percentage, water potential, contents of chlorophylls and carotenoids, phosphoenolpyruvate carboxylase (PEPC) activity, nocturnal malate and citrate accumulation, and NO emission were monitored daily in the basal and apical portions of the leaf. At the seventh day of the water shortage, quantification of total nitrosothiols and in-gel visualization of nitrosylated proteins were also performed in the apical portion. The second experiment consisted in incubating proteic extracts of G. monostachia with reducedglutathione (GSH) or S-nitrosoglutathione (GSNO) to assess the impact of nitrosylation in enzymatic activity. The enzymes selected to this step were PEPC, malate dehydrogenase (MDH), ascorbate peroxydase (APX), catalase (CAT) and NADP+-dependent isocitrate dehydrogenase (NADP-ICDH). The third experiment consisted in the application of the NO scavenger 2-(4-carboxifenil)-4,4,5,5-tetrametilimidazolina-1-oxil-3-óxido (cPTIO) or gaseous NO to leaves maintained in water or in PEG 30%, respectively. The results show that there was an increase of both CAM and NO in the leaf apex at the sixth day of water deficit. The level of nitrosylated proteins, however, decreased in this portion, indicating that the emission of NO may be the result of a de-nitrosylation process. In fact, the activity of three (PEPC, APX and NADP-ICDH) out of five enzymes analyzed decreased with nitrosylation. Therefore, NO does not regulate directly the activity of CAM enzymes. Nevertheless, exogenous NO increased all of the assayed CAM parameters after 5 days, indicating transcriptional control of CAM-related genes
12

Influência das fontes de N e do déficit hídrico sobre a expressão de aquaporinas e/ou transporte de ácidos orgânicos em plantas CAM / Influence of N sources and water deficit on aquaporin expression and/or organic acids transport in CAM plants

Pereira, Paula Natália 21 October 2016 (has links)
Ao longo dos últimos anos, o metabolismo ácido das crassuláceas (CAM) tem sido bem estudado em espécies das famílias Bromeliaceae e, principalmente, Crassulaceae. Essa via fotossintética é caracterizada pelo acúmulo noturno de ácidos orgânicos dentro do vacúolo e pela fixação de CO2 durante a noite pela enzima fosfoenolpiruvato carboxilase (PEPC). No entanto, pouco se sabe sobre a preferência pela atividade da enzima ATPase ou PPiase no transporte de prótons e ácidos orgânicos no interior das vesículas do tonoplasto em espécies CAM. A fotossíntese CAM pode ser induzida em plantas caracterizadas como CAM-facultativas por diversos fatores ambientais, por exemplo, déficit hídrico, termoperíodo, salinidade e deficiência de nutrientes. Contudo, pouco tem sido discutido sobre a influência dos nutrientes na indução do CAM. Esse estudo investigou o transporte de prótons através da membrana do tonoplasto em seis espécies de bromélias CAM e duas espécies de Kalanchoë. Todas as espécies usadas nesse estudo mostrou uma preferência pela ATPase do que pela PPiase para o transporte de prótons e ácidos orgânicos no interior das vesículas do tonoplasto. Nós também observamos uma maior expressão do CAM nas plantas de Kalanchoë laxiflora e Kalanchoë tubiflora mantidas na presença de 2.5 mM de NO3-. Por outro lado, Guzmania monostachia, uma espécie de bromélia epífita, exibiu a maior intensidade do CAM nas folhas mantidas na presença de NH4+ + déficit hídrico. Nessa espécie de bromélia, a maior expressão do gene ALMT9 na porção apical das folhas, seguido pelas maiores taxas de transporte de prótons pela ATPase, acúmulo de açucares solúveis e a ativação das defesas antioxidantes parecem estar relacionados com o aumento da tolerância pelo ajuste osmótico e limitação do dano oxidativo nas folhas mantidas na presença de NH4+ + déficit hídrico. Uma outra explicação para a maior intensidade do CAM no ápice das folhas mantidas em NH4+ + déficit hídrico poderia ser a maior expressão dos genes que codificam aquaporinas, principalmente GmPIPs e GmTIPs, que talvez sejam responsáveis pelo transporte de água das porções basal e mediana para a porção apical das folhas. O maior conteúdo de água conservado na porção apical poderia ajudar a aumentar a intensidade da fotossíntese CAM nessa porção das folhas de G. monostachia mantidas na presença de NH4+ + déficit hídrico / Historically, crassulacean acid metabolism (CAM) has been studied in many families, mainly Bromeliaceae and Crassulaceae. This photosynthetic pathway is characterized by the nocturnal organic acid accumulation in the vacuole as well as CO2 fixation during the night by the phosphoenolpyruvate carboxylase enzyme (PEPC). However, little is known about the preference of ATPase or PPiase activities for the proton and organic acids transport in tonoplast vesicles in CAM species. CAM photosynthesis can be inducted in CAM-facultative species by environmental factors such as, water deficit, thermoperiod, salinity and nutrients deficiency. Although, little has been discussed about the influence of nutrients on CAM induction. This study investigated proton transport in CAM bromeliad species and two CAM Kalanchoë species. All of the species used in this study showed a preference for ATPase rather than PPiase for the proton and organic acids transport into the tonoplast vesicles. We also observed a higher CAM expression in Kalanchoë laxiflora and Kalanchoë tubiflora plants kept in the presence of 2.5 mM of NO3-. On the other hand, Guzmania monostachia plants, an epiphytic tank bromeliad species, exhibited the highest CAM intensity in the leaves kept in the presence of NH4+ + water deficit. In this same bromeliad, a malate transporter gene, ALMT9, showed its highest expression in the apical portion of the leaves and the highest proton transport rates into the vacuole by ATPase. Soluble sugars and antioxidant enzymes activities were also verified in this study in order to observe their influence on increasing the drought tolerance of G. monostachia. In the leaves kept in NH4+ + water deficit the highest antioxidant activities and accumulation of soluble sugars were observed, this suggests that this inorganic nitrogen source seems to increase the drought tolerance by osmotic adjustment and limitation of oxidative damage. These factors can favor the increase of CAM intensity in the leaves kept under NH4+ + water deficiency. Another explanation for why the highest CAM intensity was observed in the apical portion of the leaves kept in NH4+ + water deficiency is because of the higher expression of aquaporin genes in the basal and middle regions of the leaves in the presence of this N source, mainly GmPIP and GmTIP, which might be responsible for transporting water from the basal and middle portions to the apical portion where these AQP genes are repressed. The fact that the highest water content is conserved in the apical portion might help to explain the increase in the intensity of CAM photosynthesis observed in the leaves of G. monostachia kept in the presence of NH4+ + water deficit
13

Sinalização da indução do metabolismo ácido das crassuláceas (CAM) por ácido abscísico e óxido nítrico em Guzmania monostachia (Bromeliaceae) / Abscisic acid and nitric oxide signaling on the induction of crassulacean acid metabolism in Guzmania monostachia (Bromeliaceae)

Mioto, Paulo Tamaso 02 March 2012 (has links)
Guzmania monostachia é uma bromélia tanque epífita C3-CAM facultativa, constituindo-se em um modelo muito interessante para estudar a sinalização que ocorre na transição da fotossíntese C3 para CAM. Baseado em resultados obtidos pelo Laboratório de Fisiologia Vegetal do IBUSP, constatou-se que a mudança em questão se dá de forma diferente ao longo do comprimento das folhas dessa espécie, sendo muito mais pronunciada na região apical do que na basal. Outra pesquisa, desenvolvida anteriormente no mesmo laboratório, sugere fortemente que na indução ao CAM, em plantas jovens de abacaxizeiro C3, o óxido nítrico (NO) e o ácido abscísico (ABA) atuam como mediadores dessa resposta. Levando em conta esses fatos, o presente trabalho visou caracterizar a participação do NO e do ABA como sinalizadores do CAM em uma bromélia que é reconhecidamente C3-CAM facultativa na natureza. Além disso, suas folhas apresentam diferentes níveis de expressão do CAM ao longo do comprimento, podendo, assim, constituir-se em um ótimo modelo para estudos de sinalização. Também se buscou, nesta pesquisa,saber se seria possível reduzir o modelo de estudo para folhas destacadas, não necessitando empregar a planta inteira nos experimentais. Após a comparação da fotossíntese entre folhas pertencentes a plantas inteiras e folhas destacadas, concluiu-se que é viável trabalhar com as folhas isoladas.Essas foram induzidas ao CAM por déficit hídrico, proporcionado por uma solução de polietilenoglicol (PEG) na concentração de 30%. O acúmulo noturno de acidez e a atividade das enzimas fosfoenolpiruvato carboxilase (PEPC) e malato desidrogenase (MDH) em três porções foliares (porção basal, mediana e apical) foram usadas para caracterizar o grau de expressão do CAM. O conteúdo d\'água (expresso em porcentagem)foi usado como um indicativo da perda d\'água pelo tecido foliar.A participação do NO no processo de indução ao CAM foi avaliado por meio de dosagens por quimioluminescência, espectrofluorimetria e localização in situ por microscopia de fluorescência. Também foi usado um doador desse radical livre, o nitroprissiato de sódio (SNP). O ABA foi quantificado pela técnica de cromatografia a gás acoplada a espectrômetro de massas (GC-MS). As folhas mudaram seu metabolismo fotossintético de C3 para CAM no sexto dia de incubação com PEG (segundo o acúmulo noturno de ácidos e a atividade da enzima PEPC), mas a primeira queda detectável no teor d\'água ocorreu logo nas 12 primeiras horas, aumentando até 24ª hora. Nos dias seguintes (até o 7º), o menor teor de água foi encontrado na região basal da folha, enquanto que o CAM se expressou com maior intensidade na porção apical, sugerindo a existência de uma sinalização da redução hídrica entre a parte basal e a apical da folha. De fato, foram detectados maiores quantidades de ABA, em resposta ao déficit hídrico imposto pelo PEG, ao longo de todo o comprimento foliar, com maior quantidade na região apical. Teores significativamente maiores de NO foram detectados por espectrofluorimetria nos últimos três dias de experimento, apenas na região apical. A citolocalização do NO corroborou a quantificação por espectrofluorimetria, mostrando um aumento a partir do sexto dia nos ápices foliares. Conclui-se, portanto, que tanto o NO quanto o ABA parecem participar da sinalização do CAM. Possivelmente, o ABA desempenha um papel decisivo quanto à sinalização da diminuição do teor d\'água, devido ao seu aumento em todo o comprimento da folha,enquanto que o NO parece atuar como um mensageiro secundário, importante à indução do CAM na porção apical foliar. / Guzmania monostachia is a C3-CAM facultative epiphyte tank bromeliad and a very promising model to study the C3 to CAM transition. Results obtained on the Laboratory of Plant Physiology on IBUSP showed that this transition occurs differently along the leaf blade o this species, as it is much stronger on the apical portion of the leaf, when compared to the basal one. Another research, from the same group, strongly suggests that on the induction of CAM in young pineapple plants is mediated by abscisic acid (ABA) and nitric oxide (NO). Based on both of these results, this work intends to characterize the role of NO and ABA in CAM signaling, using as a model of study a species which is generally accepted to be a facultative CAM on natural conditions. Besides that, G. Monostachia shows different degrees of CAM along the leaf blade, which makes an interesting model of it for signaling studies. It was also attempted to use detached leaves as a valid model of study for this species. Since no remarkable differences were detected between an experiment performed with whole plants or detached leaves alone, it was chosen to carry over the work using only detached leaves. The induction of CAM was performed by drought, using a 30% polyethyleneglycol (PEG) solution. The nocturnal acid accumulation and the activity of phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) enzymes were measured in three portions of the leaf (basal, middle and apical). The water amount was indicative of the water loss on foliar tissues. NO participation was assessed through chemioluminescence, spectrofluorimetry and in situ localization by fluorescence microscopy. A NO donor was also used. ABA was quantified by gas chromatography associated with mass spectrometry (GC-MS). The leaves changed the photosynthetic metabolism from C3 to CAM on the sixth day after the beginning of PEG exposure (as stated by the nocturnal acid accumulation and PEPC activity), but the decrease in water amount values started soon, after 12 hours of exposure, and stabilizing after 24 hours. The major loss of water percentage was detected on the basal portion, persisting until the seventh day, while on the apical portion, after two days the control and PEG-treated leaves remained similar. Since the C3-CAM change occurred in the apical portion, it is possible to suggest a signal transport from the base to the apex of the leaf in response to water loss. Indeed, the ABA levels remained higher with the water loss along the whole leaf, but with greater intensity on the apical portion. Higher NO levels were also detected on PEG-treated leaves, but only on the apical portion. The in situ localization of NO corroborates the spectrofluorimetry, showing an increase on the sixth day after PEG exposure on the leaf apex. In conclusion, both NO and ABA seem to participate on the signaling of CAM. Possibly, ABA plays a decisive role on indicating drought, because it increases on the whole leaf subjected to PEG, while NO is, maybe, a secondary signal, specific to processes that occur only on the apical portion, such as the CAM induction.
14

Sinalização hormonal e do óxido nítrico na indução do metabolismo ácido crassuláceo em Ananas comosus / Hormonal and nitric oxide signalling in the induction of the Crassulacean acid metabolismo in Ananas comosus

Freschi, Luciano 17 October 2008 (has links)
A expressão do metabolismo ácido crassuláceo (CAM) nas plantas C3-CAM facultativas pode ser fortemente modulada por uma variedade de sinais ambientais e endógenos. Visto que plantas de abacaxizeiro (Ananas comosus, variedade Smooth Cayenne) podem apresentar comportamento fotossintético do tipo C3 ou CAM quando cultivadas in vitro, o presente trabalho buscou analisar a participação de quatro classes hormonais (ácido abscísico, citocininas, auxinas e etileno), do cálcio citossólico (Ca2+cit.) e do óxido nítrico (NO) na regulação da expressão do CAM nessa bromélia. Para tanto, os teores endógenos desses sinalizadores foram quantificados durante a indução e a reversão do CAM em abacaxizeiro. Além disso, também foram realizadas análises do grau de expressão do CAM em plantas tratadas com esses compostos sinalizadores ou com seus inibidores de síntese, transporte ou percepção. Os dados obtidos evidenciaram uma correlação positiva entre os teores endógenos de ácido abscísico (ABA) e a expressão do CAM em abacaxizeiro, uma vez que a indução e a reversão do CAM foram acompanhadas de, respectivamente, aumentos e reduções no conteúdo foliar desse hormônio. Em consonância com esses resultados, o fornecimento de ABA exógeno resultou na indução do CAM em plantas mantidas na ausência de estresse hídrico, indicando, portanto, um efeito estimulatório desse hormônio sobre a expressão do CAM em A. comosus.Entretanto, constatou-se que a inibição do acúmulo de ABA não afetou a indução do CAM em resposta ao estresse hídrico, sugerindo que a transição de C3 para CAM em abacaxizeiro pode ocorrer tanto por uma via de sinalização dependente de ABA quanto por uma via independente de ABA. De modo inverso, os dados indicaram que as citocininas atuariam como reguladoras negativas da expressão do CAM em abacaxizeiro, uma vez que a aplicação desse hormônio inibiu parcialmente a indução do CAM em resposta ao estresse hídrico e, além disso, o conteúdo endógeno das quatro citocininas analisadas foi inversamente proporcional ao grau de expressão do CAM nessa bromélia. As auxinas e o etileno, por sua vez, parecem não estar envolvidos na regulação dos processos de indução e de reversão do CAM em abacaxizeiro. Por outro lado, os dados obtidos indicaram, de forma inédita, um papel sinalizador positivo do NO sobre a expressão da fotossíntese CAM. Verificou-se, por exemplo, que a aplicação de NO exógeno promoveu um aumento considerável na expressão do CAM em plantas de abacaxizeiro e, de modo condizente, foi observado um incremento na produção desse radical livre durante a transição da fotossíntese C3 para CAM em resposta ao estresse hídrico. Além disso, foi interessante constatar que a elevação na síntese de NO nos tecidos foliares de abacaxizeiro ocorreu principalmente no parênquima clorofiliano, sendo este tecido um dos principais alvos das alterações metabólicas necessárias para o estabelecimento da fotossíntese CAM. Os resultados também sugerem que o NO atuaria como um mensageiro secundário do sinal do ABA na indução do CAM, já que a produção desse radical livre aumentou consideravelmente nas plantas tratadas com ABA e, em paralelo, tratamentos com seqüestrador de NO bloquearam parcialmente a indução do CAM em resposta ao ABA. Por fim, os tratamentos com quelante ou ionóforo de cálcio evidenciaram que o aumento na concentração citoplasmática desse íon desempenha uma função crucial na regulação da indução de A. comosus ao CAM em resposta ao estresse hídrico. De acordo com os resultados, alterações na concentração Ca2+ citossólico parecem representar um ponto de convergência entre as vias de sinalização dependente e independente de ABA que levam à indução do CAM em abacaxizeiro. Em conjunto, os dados obtidos no presente trabalho indicam que o ABA, o NO e o Ca2+ citossólico interagem durante os eventos que sinalização que resultam na transição de C3 para CAM em abacaxizeiro, enquanto que as citocininas parecem reprimir a expressão da fotossíntese CAM. / The Crassulacean acid metabolism (CAM) expression in C3-CAM facultative plants can be strongly modulated by a diversity of environmental and endogenous signals. Since pineapple (Ananas comosus, variety Smooth Cayenne) plants can perform either C3 or CAM photosynthesis when grown in vitro, this work attempted to investigate the involvement of four hormonal classes (abscisic acid, cytokinins, auxins and ethylene), cytosolic calcium (Ca2+cit.) and nitric oxide (NO) on the regulation of CAM expression in this bromeliad. To achieve this, the levels of these signaling compounds were measured during the pineapple C3-to-CAM induction and the CAM-to-C3 reversion. Furthermore, the degree of CAM expression in plants treated with these compounds and their inhibitors of synthesis, transport or perception was also analyzed. The data obtained showed that the endogenous levels of ABA were positively correlated with the degree of CAM expression in pineapple, since the C3-to-CAM transition and the CAM-to-C3 reversion in this bromeliad were preceded by, respectively, increases and decreases in the ABA leaf content. Consistent with these results; exogenously applied ABA increased the CAM expression in plants maintained in the absence of water stress, thus, indicating a stimulatory effect of this hormone on the A. comosus CAM expression. However, the inhibition of ABA accumulation did not affect the CAM induction by water stress, suggesting that the pineapple C3-to-CAM transition can occur via both ABA-dependent and ABA-independent signaling pathways. On the opposite, the data indicated that cytokinins act as negative regulators of CAM expression in pineapple, since the adding of this hormone partially inhibited the CAM induction by water stress and, additionally, the endogenous levels of the four cytokinins analyzed were inversely proportional to the degree of CAM expression in this bromeliad. Auxins and ethylene, conversely, seem not to be involved in the regulation of the C3-to-CAM transition and the CAM-to-C3 reversion in pineapple. On the other hand, the data obtained indicated, by the first time, a positive signaling role for the NO on the expression of CAM photosynthesis. For instance, it was observed that the exogenously applied NO increased the CAM expression in pineapple plants and, in agreement; there was an elevation in the production of this free radical during the water stress-induced C3-to-CAM transition. Additionally, the elevation of the NO synthesis in the pineapple leaf tissues occurred mainly in the chlorenchyma, which is the plant tissue responsible for most of the metabolic changes necessary to the CAM photosynthesis establishment. The results also suggested that the NO may act as a second messenger of the ABA signal in the pineapple CAM induction, since the production of this free radical in ABA-treated plants increased considerably and, in parallel, treatments with a NO scavenger partially blocked the ABA-induced C3-to-CAM transition. Finally, treatments with calcium chelator or ionophore indicated that the increase in the cytosolic concentration of this ion plays a crucial role in the regulation of the CAM induction by water stress in A. comosus.According to the results, changes in the concentration of Ca2+ cytosolic seem to represent a convergence point between the ABA-dependent and ABA-independent signaling cascade leading to CAM induction in pineapple. Taken together, the data obtained in the present work indicated that ABA, NO and cytosolic Ca2+ interact during the signaling events leading to the pineapple C3-CAM transition, while the cytokinins seem to repress the expression of CAM photosynthesis.
15

Ecological and evolutionary significance of crassulacean acid metabolism in the montane genus Puya (Bromeliaceae)

Beltran, Juan David January 2017 (has links)
Little is known about the evolution and ecology of crassulacean acid metabolism (CAM) in the genus Puya Molina. CAM is a photosynthetic pathway typified by nocturnal CO2 fixation and is regarded as a water-saving mechanism. Puya is one of the largest genera in the pineapple family (Bromeliaceae), with 226 species distributed across the Andes to Costa Rica and the Guiana Shield, and from sea level to 5000 m. About 21% of Puya species are CAM and at least 10 of these CAM species occur above 3000 m. The main aim of this thesis was to uncover new evidence to understand the ecophysiology and evolution of CAM in the montane genus Puya. The prevalence of CAM and C<sub>3</sub> species in Puya was estimated from carbon isotope values of 161 species. The climatic niche of constitutive CAM species and C<sub>3</sub> species of Puya was modelled using georeferenced herbarium records and climatic variables to evaluate the differences between their niches. The evolution of CAM in Puya was investigated by reconstructing the ancestral photosynthetic pathway on an AFLP phylogeny and by studying positive selection in the genes encoding the key enzyme phosphoenolpyruvate carboxylase (PEPC). The coldresistance and the thermal lability of PEPC was investigated for high- and low- elevation CAM species of Puya to explore the potential molecular adaptations of CAM plants in high-elevation environments. The present study concludes that the common ancestor of Puya was a cold-resistant plant. This is suggested to explain the prevalence of Puya at highelevations. The evolution of CAM was correlated with changes in the climatic niche, and occurred multiple times in Puya. These multiple origins were not independent because the common ancestor of Puya was likely to be a weak CAM plant (based on a diagnostic Arg679 residue in the PEPC sequence). It is likely that populations of P. chilensis gained CAM by introgression with P. alpestris ssp. zoellneri. Weak CAM photosynthesis and coldxv resistance allowed Puya to colonise the Andes from the south to the north; and, in the process, constitutive CAM and C<sub>3</sub> evolved. The later-evolving species in the genus are suggested to have lost their capacity for CAM as they radiated into more mesic habitats during their colonisation of the northern Andes.
16

Sinalização da indução do metabolismo ácido das crassuláceas (CAM) por ácido abscísico e óxido nítrico em Guzmania monostachia (Bromeliaceae) / Abscisic acid and nitric oxide signaling on the induction of crassulacean acid metabolism in Guzmania monostachia (Bromeliaceae)

Paulo Tamaso Mioto 02 March 2012 (has links)
Guzmania monostachia é uma bromélia tanque epífita C3-CAM facultativa, constituindo-se em um modelo muito interessante para estudar a sinalização que ocorre na transição da fotossíntese C3 para CAM. Baseado em resultados obtidos pelo Laboratório de Fisiologia Vegetal do IBUSP, constatou-se que a mudança em questão se dá de forma diferente ao longo do comprimento das folhas dessa espécie, sendo muito mais pronunciada na região apical do que na basal. Outra pesquisa, desenvolvida anteriormente no mesmo laboratório, sugere fortemente que na indução ao CAM, em plantas jovens de abacaxizeiro C3, o óxido nítrico (NO) e o ácido abscísico (ABA) atuam como mediadores dessa resposta. Levando em conta esses fatos, o presente trabalho visou caracterizar a participação do NO e do ABA como sinalizadores do CAM em uma bromélia que é reconhecidamente C3-CAM facultativa na natureza. Além disso, suas folhas apresentam diferentes níveis de expressão do CAM ao longo do comprimento, podendo, assim, constituir-se em um ótimo modelo para estudos de sinalização. Também se buscou, nesta pesquisa,saber se seria possível reduzir o modelo de estudo para folhas destacadas, não necessitando empregar a planta inteira nos experimentais. Após a comparação da fotossíntese entre folhas pertencentes a plantas inteiras e folhas destacadas, concluiu-se que é viável trabalhar com as folhas isoladas.Essas foram induzidas ao CAM por déficit hídrico, proporcionado por uma solução de polietilenoglicol (PEG) na concentração de 30%. O acúmulo noturno de acidez e a atividade das enzimas fosfoenolpiruvato carboxilase (PEPC) e malato desidrogenase (MDH) em três porções foliares (porção basal, mediana e apical) foram usadas para caracterizar o grau de expressão do CAM. O conteúdo d\'água (expresso em porcentagem)foi usado como um indicativo da perda d\'água pelo tecido foliar.A participação do NO no processo de indução ao CAM foi avaliado por meio de dosagens por quimioluminescência, espectrofluorimetria e localização in situ por microscopia de fluorescência. Também foi usado um doador desse radical livre, o nitroprissiato de sódio (SNP). O ABA foi quantificado pela técnica de cromatografia a gás acoplada a espectrômetro de massas (GC-MS). As folhas mudaram seu metabolismo fotossintético de C3 para CAM no sexto dia de incubação com PEG (segundo o acúmulo noturno de ácidos e a atividade da enzima PEPC), mas a primeira queda detectável no teor d\'água ocorreu logo nas 12 primeiras horas, aumentando até 24ª hora. Nos dias seguintes (até o 7º), o menor teor de água foi encontrado na região basal da folha, enquanto que o CAM se expressou com maior intensidade na porção apical, sugerindo a existência de uma sinalização da redução hídrica entre a parte basal e a apical da folha. De fato, foram detectados maiores quantidades de ABA, em resposta ao déficit hídrico imposto pelo PEG, ao longo de todo o comprimento foliar, com maior quantidade na região apical. Teores significativamente maiores de NO foram detectados por espectrofluorimetria nos últimos três dias de experimento, apenas na região apical. A citolocalização do NO corroborou a quantificação por espectrofluorimetria, mostrando um aumento a partir do sexto dia nos ápices foliares. Conclui-se, portanto, que tanto o NO quanto o ABA parecem participar da sinalização do CAM. Possivelmente, o ABA desempenha um papel decisivo quanto à sinalização da diminuição do teor d\'água, devido ao seu aumento em todo o comprimento da folha,enquanto que o NO parece atuar como um mensageiro secundário, importante à indução do CAM na porção apical foliar. / Guzmania monostachia is a C3-CAM facultative epiphyte tank bromeliad and a very promising model to study the C3 to CAM transition. Results obtained on the Laboratory of Plant Physiology on IBUSP showed that this transition occurs differently along the leaf blade o this species, as it is much stronger on the apical portion of the leaf, when compared to the basal one. Another research, from the same group, strongly suggests that on the induction of CAM in young pineapple plants is mediated by abscisic acid (ABA) and nitric oxide (NO). Based on both of these results, this work intends to characterize the role of NO and ABA in CAM signaling, using as a model of study a species which is generally accepted to be a facultative CAM on natural conditions. Besides that, G. Monostachia shows different degrees of CAM along the leaf blade, which makes an interesting model of it for signaling studies. It was also attempted to use detached leaves as a valid model of study for this species. Since no remarkable differences were detected between an experiment performed with whole plants or detached leaves alone, it was chosen to carry over the work using only detached leaves. The induction of CAM was performed by drought, using a 30% polyethyleneglycol (PEG) solution. The nocturnal acid accumulation and the activity of phosphoenolpyruvate carboxylase (PEPC) and malate dehydrogenase (MDH) enzymes were measured in three portions of the leaf (basal, middle and apical). The water amount was indicative of the water loss on foliar tissues. NO participation was assessed through chemioluminescence, spectrofluorimetry and in situ localization by fluorescence microscopy. A NO donor was also used. ABA was quantified by gas chromatography associated with mass spectrometry (GC-MS). The leaves changed the photosynthetic metabolism from C3 to CAM on the sixth day after the beginning of PEG exposure (as stated by the nocturnal acid accumulation and PEPC activity), but the decrease in water amount values started soon, after 12 hours of exposure, and stabilizing after 24 hours. The major loss of water percentage was detected on the basal portion, persisting until the seventh day, while on the apical portion, after two days the control and PEG-treated leaves remained similar. Since the C3-CAM change occurred in the apical portion, it is possible to suggest a signal transport from the base to the apex of the leaf in response to water loss. Indeed, the ABA levels remained higher with the water loss along the whole leaf, but with greater intensity on the apical portion. Higher NO levels were also detected on PEG-treated leaves, but only on the apical portion. The in situ localization of NO corroborates the spectrofluorimetry, showing an increase on the sixth day after PEG exposure on the leaf apex. In conclusion, both NO and ABA seem to participate on the signaling of CAM. Possibly, ABA plays a decisive role on indicating drought, because it increases on the whole leaf subjected to PEG, while NO is, maybe, a secondary signal, specific to processes that occur only on the apical portion, such as the CAM induction.
17

Sinalização do óxido nítrico sobre a regulação do Metabolismo Ácido das Crassuláceas (CAM) em Guzmania monostachia / Crassulacean Acid Metabolism (CAM) regulation by nitric oxide in Guzmania monostachia

Paulo Tamaso Mioto 06 July 2016 (has links)
Guzmania monostachia é uma bromélia-tanque epífita que apresenta uma alta plasticidade fotossintética, sendo capaz de regular positivamente o metabolismo ácido das crassuláceas (CAM) em resposta ao déficit hídrico. Também foi visto para essa espécie que o incremento do CAM se dá de forma diferente ao longo do comprimento da folha, sendo mais intenso na região apical do que na basal. Trabalhos anteriores indicaram que o óxido nítrico (NO) parece estar envolvido na regulação do CAM, mas nada se sabe dos mecanismos pelos quais isso ocorre. Uma vez que parecem não existir receptores específicos de NO, acredita-se que ele seja capaz de se ligar diretamente às proteínas, através de um processo conhecido como nitrosilação. O presente trabalho visou determinar se o NO estaria atuando na regulação do CAM em G. monostachia através da nitrosilação de proteínas relacionadas a esse metabolismo. Para tanto, foram feitos três desenhos experimentais. No primeiro, folhas destacadas de G. monostachia foram mantidas por 7 dias em água (controle) ou em uma solução contendo 30% de PEG (déficit hídrico). Durante esse período, foram monitorados parâmetros indicativos de estresse (porcentagem de água, potencial hídrico, além dos teores de clorofilas, carotenoides e proteínas), CAM (atividade da fosfoenolpiruvato carboxilase - PEPC - e acúmulo noturno de malato e citrato) e emissão de NO. Todas as análises foram feitas nas porções basal e apical das folhas. Ao final dos 7 dias de escassez hídrica, também foram feitas dosagens de nitrosotióis totais e a visualização em gel de proteínas nitrosiladas na porção apical. O segundo experimento visou verificar a modulação da atividade de enzimas pela nitrosilação. Para tanto, extratos proteicos de folhas de G. monostachia foram incubados com glutationa reduzida (GSH) ou S-nitrosoglutationa (GSNO) para, em seguida,verificar diferenças nas atividades das enzimas PEPC, malato desidrogenase (MDH), ascorbato peroxidase (APX), catalase (CAT) e isocitrato desidrogenase dependente de NADP+ (NADP-ICDH). No terceiro experimento foi feita a aplicação do sequestrador de NO 2-(4-carboxifenil)-4,4,5,5-tetrametilimidazolina-1-oxil-3-óxido (cPTIO) ou de NO gasoso em folhas destacadas mantidas em PEG ou água, respectivamente. Os resultados mostraram que o aumento do CAM se dá seis dias após o início do tratamento de déficit hídrico, concomitantemente com o aumento na produção de NO. Esses dois fenômenos ocorreram somente na porção apical da folha. A quantidade de proteínas nitrosiladas, no entanto, diminuiu em resposta ao déficit hídrico nesta porção, indicando que o aumento na emissão de NO pode ser oriundo de uma desnitrosilação de proteínas. De fato, a atividade de três (PEPC, APX e NADP-ICDH) das cinco enzimas analisadas mostraram uma diminuição em resposta ao tratamento com GSNO. Dessa forma, o NO parece não se ligar diretamente às enzimas do CAM para regular sua atividade. Mesmo assim, a aplicação de NO gasoso causou um aumento em todos os parâmetros relacionados ao CAM após 5 dias, sugerindo algum tipo de controle transcricional sobre genes relacionados a esse tipo de fotossíntese / Guzmania monstachia is an epiphytic tank-bromeliad capable of up-regulating CAM under water deficit. Moreover, the increase in CAM is stronger in the apical portion of the leaf, when compared to the base. Nitric oxide (NO) is a signaling molecule involved in the regulation of CAM, but the mechanisms underlying this phenomenon are still largely unknown. NO is capable of interacting with proteins through a process known as nitrosylation. Here, we investigated whether NO could regulate CAM by protein nitrosylation. In order to do so, we performed three experiments. In the first one, detached leaves were maintained for 7 days in water or in a solution containing 30% of poliethylene glycol 6000 (PEG). During this period, the water percentage, water potential, contents of chlorophylls and carotenoids, phosphoenolpyruvate carboxylase (PEPC) activity, nocturnal malate and citrate accumulation, and NO emission were monitored daily in the basal and apical portions of the leaf. At the seventh day of the water shortage, quantification of total nitrosothiols and in-gel visualization of nitrosylated proteins were also performed in the apical portion. The second experiment consisted in incubating proteic extracts of G. monostachia with reducedglutathione (GSH) or S-nitrosoglutathione (GSNO) to assess the impact of nitrosylation in enzymatic activity. The enzymes selected to this step were PEPC, malate dehydrogenase (MDH), ascorbate peroxydase (APX), catalase (CAT) and NADP+-dependent isocitrate dehydrogenase (NADP-ICDH). The third experiment consisted in the application of the NO scavenger 2-(4-carboxifenil)-4,4,5,5-tetrametilimidazolina-1-oxil-3-óxido (cPTIO) or gaseous NO to leaves maintained in water or in PEG 30%, respectively. The results show that there was an increase of both CAM and NO in the leaf apex at the sixth day of water deficit. The level of nitrosylated proteins, however, decreased in this portion, indicating that the emission of NO may be the result of a de-nitrosylation process. In fact, the activity of three (PEPC, APX and NADP-ICDH) out of five enzymes analyzed decreased with nitrosylation. Therefore, NO does not regulate directly the activity of CAM enzymes. Nevertheless, exogenous NO increased all of the assayed CAM parameters after 5 days, indicating transcriptional control of CAM-related genes
18

Sinalização hormonal e do óxido nítrico na indução do metabolismo ácido crassuláceo em Ananas comosus / Hormonal and nitric oxide signalling in the induction of the Crassulacean acid metabolismo in Ananas comosus

Luciano Freschi 17 October 2008 (has links)
A expressão do metabolismo ácido crassuláceo (CAM) nas plantas C3-CAM facultativas pode ser fortemente modulada por uma variedade de sinais ambientais e endógenos. Visto que plantas de abacaxizeiro (Ananas comosus, variedade Smooth Cayenne) podem apresentar comportamento fotossintético do tipo C3 ou CAM quando cultivadas in vitro, o presente trabalho buscou analisar a participação de quatro classes hormonais (ácido abscísico, citocininas, auxinas e etileno), do cálcio citossólico (Ca2+cit.) e do óxido nítrico (NO) na regulação da expressão do CAM nessa bromélia. Para tanto, os teores endógenos desses sinalizadores foram quantificados durante a indução e a reversão do CAM em abacaxizeiro. Além disso, também foram realizadas análises do grau de expressão do CAM em plantas tratadas com esses compostos sinalizadores ou com seus inibidores de síntese, transporte ou percepção. Os dados obtidos evidenciaram uma correlação positiva entre os teores endógenos de ácido abscísico (ABA) e a expressão do CAM em abacaxizeiro, uma vez que a indução e a reversão do CAM foram acompanhadas de, respectivamente, aumentos e reduções no conteúdo foliar desse hormônio. Em consonância com esses resultados, o fornecimento de ABA exógeno resultou na indução do CAM em plantas mantidas na ausência de estresse hídrico, indicando, portanto, um efeito estimulatório desse hormônio sobre a expressão do CAM em A. comosus.Entretanto, constatou-se que a inibição do acúmulo de ABA não afetou a indução do CAM em resposta ao estresse hídrico, sugerindo que a transição de C3 para CAM em abacaxizeiro pode ocorrer tanto por uma via de sinalização dependente de ABA quanto por uma via independente de ABA. De modo inverso, os dados indicaram que as citocininas atuariam como reguladoras negativas da expressão do CAM em abacaxizeiro, uma vez que a aplicação desse hormônio inibiu parcialmente a indução do CAM em resposta ao estresse hídrico e, além disso, o conteúdo endógeno das quatro citocininas analisadas foi inversamente proporcional ao grau de expressão do CAM nessa bromélia. As auxinas e o etileno, por sua vez, parecem não estar envolvidos na regulação dos processos de indução e de reversão do CAM em abacaxizeiro. Por outro lado, os dados obtidos indicaram, de forma inédita, um papel sinalizador positivo do NO sobre a expressão da fotossíntese CAM. Verificou-se, por exemplo, que a aplicação de NO exógeno promoveu um aumento considerável na expressão do CAM em plantas de abacaxizeiro e, de modo condizente, foi observado um incremento na produção desse radical livre durante a transição da fotossíntese C3 para CAM em resposta ao estresse hídrico. Além disso, foi interessante constatar que a elevação na síntese de NO nos tecidos foliares de abacaxizeiro ocorreu principalmente no parênquima clorofiliano, sendo este tecido um dos principais alvos das alterações metabólicas necessárias para o estabelecimento da fotossíntese CAM. Os resultados também sugerem que o NO atuaria como um mensageiro secundário do sinal do ABA na indução do CAM, já que a produção desse radical livre aumentou consideravelmente nas plantas tratadas com ABA e, em paralelo, tratamentos com seqüestrador de NO bloquearam parcialmente a indução do CAM em resposta ao ABA. Por fim, os tratamentos com quelante ou ionóforo de cálcio evidenciaram que o aumento na concentração citoplasmática desse íon desempenha uma função crucial na regulação da indução de A. comosus ao CAM em resposta ao estresse hídrico. De acordo com os resultados, alterações na concentração Ca2+ citossólico parecem representar um ponto de convergência entre as vias de sinalização dependente e independente de ABA que levam à indução do CAM em abacaxizeiro. Em conjunto, os dados obtidos no presente trabalho indicam que o ABA, o NO e o Ca2+ citossólico interagem durante os eventos que sinalização que resultam na transição de C3 para CAM em abacaxizeiro, enquanto que as citocininas parecem reprimir a expressão da fotossíntese CAM. / The Crassulacean acid metabolism (CAM) expression in C3-CAM facultative plants can be strongly modulated by a diversity of environmental and endogenous signals. Since pineapple (Ananas comosus, variety Smooth Cayenne) plants can perform either C3 or CAM photosynthesis when grown in vitro, this work attempted to investigate the involvement of four hormonal classes (abscisic acid, cytokinins, auxins and ethylene), cytosolic calcium (Ca2+cit.) and nitric oxide (NO) on the regulation of CAM expression in this bromeliad. To achieve this, the levels of these signaling compounds were measured during the pineapple C3-to-CAM induction and the CAM-to-C3 reversion. Furthermore, the degree of CAM expression in plants treated with these compounds and their inhibitors of synthesis, transport or perception was also analyzed. The data obtained showed that the endogenous levels of ABA were positively correlated with the degree of CAM expression in pineapple, since the C3-to-CAM transition and the CAM-to-C3 reversion in this bromeliad were preceded by, respectively, increases and decreases in the ABA leaf content. Consistent with these results; exogenously applied ABA increased the CAM expression in plants maintained in the absence of water stress, thus, indicating a stimulatory effect of this hormone on the A. comosus CAM expression. However, the inhibition of ABA accumulation did not affect the CAM induction by water stress, suggesting that the pineapple C3-to-CAM transition can occur via both ABA-dependent and ABA-independent signaling pathways. On the opposite, the data indicated that cytokinins act as negative regulators of CAM expression in pineapple, since the adding of this hormone partially inhibited the CAM induction by water stress and, additionally, the endogenous levels of the four cytokinins analyzed were inversely proportional to the degree of CAM expression in this bromeliad. Auxins and ethylene, conversely, seem not to be involved in the regulation of the C3-to-CAM transition and the CAM-to-C3 reversion in pineapple. On the other hand, the data obtained indicated, by the first time, a positive signaling role for the NO on the expression of CAM photosynthesis. For instance, it was observed that the exogenously applied NO increased the CAM expression in pineapple plants and, in agreement; there was an elevation in the production of this free radical during the water stress-induced C3-to-CAM transition. Additionally, the elevation of the NO synthesis in the pineapple leaf tissues occurred mainly in the chlorenchyma, which is the plant tissue responsible for most of the metabolic changes necessary to the CAM photosynthesis establishment. The results also suggested that the NO may act as a second messenger of the ABA signal in the pineapple CAM induction, since the production of this free radical in ABA-treated plants increased considerably and, in parallel, treatments with a NO scavenger partially blocked the ABA-induced C3-to-CAM transition. Finally, treatments with calcium chelator or ionophore indicated that the increase in the cytosolic concentration of this ion plays a crucial role in the regulation of the CAM induction by water stress in A. comosus.According to the results, changes in the concentration of Ca2+ cytosolic seem to represent a convergence point between the ABA-dependent and ABA-independent signaling cascade leading to CAM induction in pineapple. Taken together, the data obtained in the present work indicated that ABA, NO and cytosolic Ca2+ interact during the signaling events leading to the pineapple C3-CAM transition, while the cytokinins seem to repress the expression of CAM photosynthesis.
19

Respostas de CAM às variações ambientais na bromélia Dyckia tuberosa (Vellozo) Beer / Environmental influence on CAM in the bromeliad Dyckia tuberisa (Vellozo) Beer

Nascimento, Davi Roncoletta 05 October 2012 (has links)
Plantas com o tipo fotossintético CAM podem suportar condições de baixa disponibilidade de água através de um sistema de concentração de gás carbônico que aumenta a eficiência de uso da água através de uma fixação inicial do CO2 durante a noite, em condições de baixo déficit de pressão de vapor entre a folha e a atmosfera. Esse processo favorece a ocupação de regiões áridas e de sítios onde a água pode se tornar rapidamente indisponível. A ocorrência desse tipo fotossintético abrange uma grande amplitude de táxons, incluindo a família Bromeliaceae. Entre as espécies de Bromeliaceae que apresentam CAM encontra-se Dickya tuberosa, uma espécie que apresenta uma grande abundancia nos afloramentos rochosos associados ao monumento natural da Pedra Grande - Atibaia - SP. Nesse local, D. tuberose apresenta um papel relevante na vegetação associada à superfície de rocha exposta como componente essencial das comunidades denominadas \"ilhas de vegetação\". As condições predominantes no afloramento rochoso da Pedra Grande são de grande escassez de solo e água, além de extrema exposição. As variações na disponibilidade de água no afloramento rochoso seriam devidas, entre outras causas, ao tamanho das ilhas de solo onde D. tuberose ocorre e as características de declividade e orientação da vertente da superfície rochosa onde a ilha esta instalada. A partir das observações no ambiente natural, pergunta-se se os padrões de assimilação em D. tuberose relacionados ao CAM apresenta variações associadas as características das ilhas de solo onde ocorre. Para investigar esta relação, plantas de D. tuberose foram estudadas em campo e em condições semi-controladas em casa de vegetação. A técnica utilizada para caracterização dos padrões de CAM foi a de titulação da acidez do mesofilo. Tanto em grupos experimentais submetidos a períodos distintos de suspensão da rega como em amostras obtidas diretamente do campo, observam-se padrões de variação da acidez que podem ser associados a variações no suprimento hídrico. As variações foram caracterizadas através da diferença na acidez entre o inicio da manha e o final da tarde. A redução na amplitude da variação coincidiu com a intensidade da restrição no suprimento hídrico. Entretanto, a variação foi associada a redução do valor da acidez no final do dia, o que estaria associado a uma redução na recaptura do CO2 durante o período de iluminação. A maior influencia detectada nas plantas em campo foi a umidade relativa do ar. Conjectura-se um papel da assimilação de água através das folhas de D. tuberose como um atributo essencial a ocupação do substrato rochoso na Pedra Grande - Atibaia / Plants with crassulacean acid metabolism are able to support conditions of low availability of water through a carbon dioxide concentration system which increases the efficiency of use of water through an overnight CO2 fixture under low deficit of vapor pressure between the leaf and the atmosphere. This process favors the occupation of arid regions and places where water can quickly become unavailable. The occurrence of this type photosynthetic covers a wide range of taxa, including the Bromeliaceae family. Among the species of Bromeliaceae presenting CAM is Dickya tuberose, a species that has a great abundance on rocky outcrops associated with natural monument of Pedra Grande - Atibaia - SP. At this site, D. tuberose has a role in vegetation associated with surface rock exposed as an essential component of communities called \"vegetation islands\". The conditions prevailing in the rocky outcrop of Pedra Grande are of great scarcity of land and water, and extreme exposure. The variations in water availability in rocky outcrop would be due, among other reasons, the size of the islands where vegetation D. tuberose occurs and the characteristics of inclination and orientation of the slope of the rocky surface where the island is installed. From the observations in the natural environment, wonders whether the patterns of assimilation in D. tuberose related to CAM presents variations associated characteristics of vegetation islands where it occurs. To investigate this relationship, plants of D. tuberose were studied in field and semi-controlled conditions in a greenhouse. The technique used to characterize patterns of CAM was the titration acidity of the mesophyll. In both experimental groups undergoing different periods of suspension of irrigation as in samples obtained directly from the field, there are patterns of variation in acidity that may be associated with variations in water supply. The changes were characterized by the difference in acidity between the early morning and late afternoon. The reduction in amplitude of the variation coincided with the intensity of the restriction in water supply. However, the variation was associated with reduced acidity value at the end of the day, which would be associated with a reduction in the recapture of CO2 during the illumination period. The major influence detected on plants in the field was the relative humidity. It is conjectured a part of the assimilation of water through the leaves of D. tuberose as an essential attribute of the occupation of substrate in Pedra Grande - Atibaia
20

Respostas à deficiência hí­drica relacionadas à  ontogenia foliar em Guzmania monostachia (Bromeliaceae): variações do potencial hídrico e expressão de diferentes padrões do Metabolismo Ácido das Crassuláceas (CAM). / Responses to water deficiency related to foliar ontogeny in Guzmania monostachia (Bromeliaceae): water potencial variations and different patterns in the Crassulacean Acid Metabolism (CAM) expression

Mancilha, Dioceni 05 December 2017 (has links)
O metabolismo ácido das crassuláceas (CAM) representa uma importante via de assimilação de carbono fotossintético, caracterizado pela fixação do CO2 atmosférico durante o período da noite, por meio da enzima fosfoenolpiruvato carboxilase (PEPC) e pelo acúmulo noturno de ácidos orgânicos. Nesse tipo de fotossíntese, os estômatos permanecem fechados durante a maior parte do dia e, consequentemente, propicia uma maior eficiência no uso da água quando comparado com plantas C3. Essa adaptação ecofisiológica permite às espécies CAM suportar alterações frequentes na disponibilidade de água no meio ambiente. Guzmania monostachia é uma bromélia epífita com tanque que apresenta a capacidade de alterar seu metabolismo fotossintético, passando de C3 a CAM, em resposta a condições ambientais estressantes, constituindo-se, portanto, num interessante modelo de estudo sobre plasticidade fisiológica. Algumas pesquisas anteriores do nosso laboratório mostraram que diferentes regiões foliares de G. monostachia podem desempenhar funções distintas em resposta à escassez hídrica. Foi visto que a expressão do CAM ocorreu com intensidades diferentes ao longo do comprimento foliar, sendo mais pronunciada na região apical. Um possível direcionamento da água da região basal para apical foi hipotetizado ocorrer, de forma que mesmo em situações de curta restrição hídrica (7 dias), a quantidade de água nos tecidos da porção apical permaneceu praticamente constante. Levando em consideração esses resultados prévios, a presente pesquisa teve como objetivo principal caracterizar o padrão de expressão do CAM nas folhas de diferentes estágios ontogenéticos (folhas jovens, intermediárias e maduras), bem como em suas porções, relacionando com as possíveis variações no estado hídrico durante a imposição da restrição no fornecimento de água por um período de até oito dias. E investigar se as variações do potencial hídrico foliar seriam decorrentes de alterações no acúmulo de ácidos orgânicos e/ou açúcares solúveis nas diferentes porções foliares e nas folhas em diferentes estágios do desenvolvimento. Para tanto, plantas de G. monostachia tiveram a rega suspensa durante oito dias e, posteriormente, elas foram reidratadas por dois dias consecutivos. As coletas foram realizadas nas seguintes condições experimentais: 1) sem suspensão de rega, ou seja, as plantas foram mantidas bem hidratadas (controle), 2) com suspenção de rega por 1, 4 e 8 dias e 3) com retorno à rega após o período de seca (2 dias de reidratação). Amostras de folhas em diferentes fases de desenvolvimento (jovens, intermediárias e adultas) foram divididas em três porções ápice, mediana e base para determinação do potencial hídrico, conteúdo relativo de água e abertura do poro estomático, além dos ensaios da atividade enzimática da PEPC, quantificação de açúcares solúveis e do acúmulo noturno de ácido málico. Os resultados demonstraram que as regiões apical e mediana de todas as folhas pertencentes aos diferentes estágios de desenvolvimento da roseta expressaram o CAM, quando submetidas a uma situação de restrição hídrica por no mínimo quatro dias. A porção apical foi a que apresentou os parâmetros indicativos desse metabolismo de forma mais intensa. Além disso, com a imposição à seca, a transição entre o metabolismo C3 para o CAM clássico parece ocorrer até o quarto dia de suspenção de rega, com abertura dos estômatos predominantemente no período da noite e, ao estender o período de escassez hídrica para oito dias, foi possível observar a transição para o CAM do tipo idling, isto é, com fechamento estomático diuturnamente. Observou-se também, uma redução gradual do potencial hídrico ao longo do período de exposição à seca, principalmente no ápice de folhas de diferentes estágios ontogenéticos. Além disso, o ápice das folhas de todos os grupos ontogenéticos e, em especial, as folhas jovens (incluindo as porções mediana e basal) foram os que não apresentaram redução do conteúdo hídrico durante o tratamento de seca por oito dias. Entretanto, a partição de açúcares solúveis foi alterada, de forma que a porção da basal, a qual inicialmente mantinha as maiores quantidades de carboidratos, apresentou reduções significativas no conteúdo de frutose e glicose com o prolongamento da seca para 8 dias. Já a porção apical, teve um comportamento inverso. Esses resultados sugerem que o tratamento de déficit hídrico pode desencadear um ajuste osmótico tanto nos diferentes grupos foliares da roseta quanto no limbo foliar, direcionando, preferencialmente, o transporte da água às folhas jovens e ao ápice das folhas de diferentes idades. Com a retomada da rega, após um período de déficit hídrico de oito dias, notou-se que apenas dois dias de rega normalizada foram suficientes para que o conteúdo hídrico fosse totalmente recuperado. No entanto, a partição de açúcares solúveis entre as folhas da roseta, não apresentou um padrão semelhante ao controle (plantas bem hidratadas). O metabolismo fotossintético também não foi revertido de CAM para C3, sugerindo ser necessário um período maior de reabastecimento de água no tanque / Crassulacean acid metabolism (CAM) is a photosynthetic CO2 fixation pathway that evolved in some plants. It is characterized by the fixation of atmospheric CO2 during the night, by the enzyme phosphoenolpyruvate carboxylase (PEPC) and nocturnal organic acid accumulation. In a plant using CAM, the water use efficiency is maximized because the stomata remain closed during daytime and open at night when the relative humidity of the air is higher. Guzmania monostachia, an epiphytic bromeliad, is an interesting plant model because it presents the ability to change its photosynthetic metabolism, from C3 to CAM, in response to stressful environmental conditions. Previously studies demonstrated that different leaf regions of G. monostachia performed distinct functions in response to water stress. In addition, CAM expression was more pronounced in the apical region. Even in situations of water restriction for 7 days, the amount of water in the tissues of the apical portion remained almost constant. Then, the present study hypothesized that the water may be transported from the base to the apex. The present study aimed at characterize the CAM expression pattern in leaf blade and among different foliar groups (younger, intermediate and older leaves), relating them to variations in water status during suspension irrigation for a period of up to eight days. In addition, the present study investigated if the possible variations of the water leaf potential would be due to changes in the accumulation of organic acids and/or soluble sugars in different leaf portions at different foliar ontogenetic groups. Three experimental conditions were carried out: 1) well-watered condition (control), 2) under suspension irrigation (for 1, 4 and 8 days) and 3) rewatered treatment, after drought period (watered daily for two days). Leaf samples of different foliar groups (younger, intermediate and older) were divided into three portions (apex, middle and base) for determination of water potential, relative water content, stomatal aperture, PEPC activity, quantification of soluble sugars and nocturnal malate accumulation. Results indicated that apical and middle portions of all the leaves belonging to different foliar groups of the rosette expressed CAM when watering was suspended for at least four days. The apical portion displayed the most intense parameters indicative of CAM expression. In addition, with drought imposition, the transition from C3 metabolism to classic CAM appears to occur up to the fourth day of irrigation suspension, with stomatal aperture during nighttime. When extending the period of water shortage for eight days, the establishment of a typical CAM-idling pathway, with stomatal closure during day and night, was verified It was also observed a gradual reduction of water potential, during the period of exposure to drought, mainly at the apical of leaves of different foliar groups. At the apex of all foliar ontogenetic groups, and especially the younger leaves (including the middle and basal portions) were those that did not present reduction of water content during the drought treatment for eight days. However, the partition of soluble sugars was altered, so that the basal portion, which initially maintained the highest carbohydrate levels, showed significant reductions in the fructose and glucose content with prolongation of the drought for 8 days. The apical portion had the opposite behavior. These results suggest that drought treatment can trigger an osmotic adjustment both in the different leaf ontogenetic groups of the rosette and of the leaf blade. In this way, the water transport preferably favors the younger leaves and the apical of the different leaf developmental stages. After a period of water deficit, the plants were rehydrated (for two days) and the water content was fully recovered. However, the partition of soluble sugars along the rosette leaves did not present a pattern similar to that observed before of the beginning of the hydration interruption. The photosynthetic metabolism was also not reversed from the CAM to C3, suggesting that a longer tank replenishment period is necessary

Page generated in 0.1315 seconds