Spelling suggestions: "subject:"crystalline plasticity"" "subject:"erystalline plasticity""
1 |
Plasticité cristaline des aciers sphéroïdisés et clivage / Crystalline plasticity of spheroidized steels and cleavageRezaee, Saeid 03 October 2011 (has links)
La prédiction du clivage des aciers ferritiques a été largement étudiée à l’aide de l’approchelocale de la rupture, et des modèles macroscopiques identifiés phénoménologiquement comme celui de Beremin. Cette prédiction reste cependant difficile dans le domaine de transition ductilefragile. Cela a conduit à des études micromécaniques par les approches polycristallines afin de décrire l’évolution de la contrainte de clivage en fonction de la température pour les aciers bainitiques. Dans cette étude, on utilise une approche polycristalline, puis on développe un modèle macroscopique de prédiction du clivage d’un acier de microstructure plus simple, un acier sphéroïdisé. De nombreux résultats de la littérature indiquent que leur rupture est due à la microfissuration des carbures. Le comportement mécanique et la rupture d'un acier sphéroïdisé C35R sont obtenus par des essais de traction simple et de ténacité dans une gamme de température entre -196 et 20°C. Les analyses microstructurales sont effectuées pour déterminer la distribution de taille des grains et des carbures. Des modélisations simplifiées de la microstructure de l’acier sont proposées. L’aspect polycristallin du matériau est pris en compte. Une étude paramétrique concernant la distribution des contraintes dans les carbures est réalisée. On montre que les paramètres du modèle polycristallin n’influencent pas cette distribution à la condition de représenter le même comportement global en traction. La prédiction de la rupture par clivage est basée sur une approche probabiliste, considérant la dispersion des contraintes dans les carbures due à l'hétérogénéité des champs mécaniques issue de la modélisation polycristalline. La probabilité élémentaire de rupture des carbures est ainsi obtenue. Différents modèles de rupture macroscopiques sont alors développés, basés sur des critères en germination et propagation des microfissures. Ils sont appliqués à une éprouvette SENT afin de prédire la ténacité dans le bas de la transition ductile-fragile. La comparaison avec les résultats expérimentaux montre que l’on doit prendre en compte l’évolution de la densité volumique des microfissures avec le chargement, l’extension des microfissures de taille variable ou leur émoussement. L’importance des différents critères dépend de la température. / The cleavage fracture prediction of the ferritic steels has been widely studied using the localapproach to fracture and macroscopic phenomenological models like Beremin. This prediction remains difficult in the ductile-brittle transition domain. Therefore, micromechanical studies have been carried out using polycrystalline approaches to describe the evolution of the cleavage stress in function of temperature for the bainitic steels. In this study, a macroscopic model using a polycrystalline approach is developed to predict the cleavage of one steel with a simple microstructure: a spheroidized steel. Many results in the literature indicate that its fracture is due to carbide microcracking. The mechanical and fracture behavior of a spheroidized steel C35R are obtained by tensile and toughness tests in a temperature range between -196°C and 20°C. The microstructural analyses are performed to determine the grain and carbide size distribution. Simplified microstructure models of the steel are proposed. The polycrystalline aspect of the material is taken into account. A parametric study on the carbide stress distribution is carried out. It is shown that the parameters of the polycrystalline model do not influence the carbide stress distribution if the same global tensile behavior is represented. The cleavage fracture prediction is based on the probabilistic approach, considering the stress scatter in the carbides due to the mechanical fields’ heterogeneity related to the polycrystalline modelling. Thus, the elementary fracture probability function is obtained. Different macroscopic fracture models are then developed based on the criteria based on nucleation and propagation of microcracks. The models are applied to a SENT specimen to predict the toughness in the bottom of the ductile-brittle transition domain. The comparison with experimental results shows that the evolution of the microcracks volume density with the loading, the extension of the microcracks with various sizes or their blunting, must be taken into account. The importance of the different criterions depends on the temperature.
|
2 |
Approche non locale en plasticité cristalline : application à l'étude du comportement mécanique de l'acier AISI 316LN en fatigue oligocyclique / Non local approach in cristalline plasticity : study of mechanical behaviour of AISI 316LN stainless steel during low cycle fatigueSchwartz, Julien 15 June 2011 (has links)
Si l'amorçage des fissures de fatigue est aujourd'hui bien compris dans le cas de monocristaux de métaux purs, ce phénomène s'avère plus complexe à cerner et à prédire dans le cas d'alliages métalliques polycristallins tels que l'acier AISI 316LN.D'un point de vue expérimental, notre étude s'est concentrée sur la caractérisation du comportement mécanique et l'étude, à différentes échelles, des phénomènes liés à l'amorçage des fissures de fatigue oligocyclique dans l'acier 316LN. Pour des niveaux de déformation appliquée de Δε/2 = 0,3 et 0,5%, l'adoucissement cyclique observé au cours des essais coïncide avec l'organisation des dislocations sous forme de bandes. Ces bandes sont liées à l'activation des systèmes de plus haut facteur de Schmid. Elles portent la majeure partie de la déformation et provoquent en surface des intrusions et extrusions favorisant l'apparition et la coalescence de fissures.D'un point de vue modélisation, nous avons proposé un nouveau modèle de plasticité cristalline intégrant des dislocations géométriquement nécessaires (GND) directement calculées à partir du second gradient de la rotation élastique. Implémenté dans les codes d'éléments finis AbaqusTM et Cast3mTM, ce modèle s'inspire des travaux sur le monocristal en transformations finies de Peirce et al. (1983) et de Teodosiu et al. (1993). Adapté au cas des polycristaux par Hoc (1999) et Erieau (2003), il a été enrichi par l’introduction GND selon la théorie proposée par Acharya et Bassani (2000). Les simulations réalisées sur des différents types d'agrégats (2D extrudé et 3D) montrent que la prise en compte de GND permet :- de reproduire les effets de taille de grains au niveau macroscopique et local,- de décrire plus finement les champs de contraintes calculés.Ces simulations ont permis de mettre en évidence l'influence des matrices d'élasticité et d'écrouissage sur les valeurs et l'évolution des contraintes macroscopique effective et cinématique moyenne et le rôle important des conditions aux limites lors des calculs d'agrégats. / If fatigue crack initiation is currently quite well understood for pure single crystals, its comprehension and prediction in cases of polycrystal alloys such as AISI 316LN stainless steel remain complicated.Experimentally our study focuses on the characterisation of the mechanical behaviour and on the study at different scales of the phenomenon leading to low cycle fatigue crack initiation in 316LN stainless steel. For straining amplitudes of Δε/2 = 0,3 and 0,5%, the cyclic softening observed during testing has been related to the organisation of dislocations in band structures. These bands, formed due to the activation of slip systems having the greatest Schmid's factor, carry the most part of the deformation. Their emergence at free surfaces leads to the formation of intrusions and extrusions which help cracks initiate and spread.Numerically we worked on the mesoscopic scale, proposing a new model of crystalline plasticity. This model integrates geometrically necessary dislocations (GND) directly computed from the lattice curvature. Implemented in the finite element code AbaqusTM and Cast3mTM, it is based on single crystal finite deformations laws proposed by Peirce et al. (1983) and Teodosiu et al. (1993). Extended for polycrystals by Hoc (2001) and Erieau (2003), it has been improved by the introduction of GND (Acharya and Bassani, 2000). The simulations performed on different types of aggregates (2D/3D) have shown that taking GND into account enables:- the prediction of the grain size effect on a macroscopic and on a local scale,- a finer computation of local stress field.The influence of the elasticity and interaction matrices on the values and the evolution of the isotropic and kinematic mean stresses has been shown. The importance of boundary conditions on computed mechanical fields could also be pointed out.
|
3 |
Etude expérimentale et simulation numérique des mécanismes de plasticité dans les alliages de zirconium / Experimental study and numerical simulation of the plastic deformation of zirconium single crystalsLebon, Cyril 16 December 2011 (has links)
Ce travail part du constat d’une part qu'il existe très peu de données expérimentales dans la littérature sur les monocristaux de zirconium et d’autre part qu’aucune loi de comportement monocristalline pour ce matériau n’est déterminée. L'objectif est donc de disposer d'une base de données expérimentale conséquente comme les cissions critiques pour le système prismatique, l'écrouissage, l'activation des systèmes de glissement et les volumes d'activation. Après avoir obtenu ces différents paramètres en utilisant la méthode de corrélation d'images, une approche multiéchelle a été mise en œuvre en s’appuyant d’une part sur la dynamique des dislocations et d’autre part sur des calculs par éléments finis. Une première loi de comportement monocristalline pour le zirconium est proposée et des simulations par éléments finis ont validé cette approche innovante. / There is only few experimental data in the literature on the zirconium single crystals and no constitutive laws for this single crystal material are provided. The goal of this work is then to create an exhaustive experimental database like the Critical Resolved Shear Stress (CRSS) for the prismatic slip, the strain-hardening, the activation of the prismatic glide system and the activation volumes. We determine theses parameters from image correlation method. Then, we develop a new multiscale approach using dislocations dynamics concept and finite element computations. Finally, a first single crystal constitutive law for the zirconium is proposed and a good agreement with the experimental data is obtained.
|
4 |
Étude expérimentale et numérique des couplages thermomécaniques, et bilan d'énergie au sein des polycristaux métalliques / Experimental and numerical investigation of thermomechanical couplings and energy balance in metallic polycrystalsSeghir, Rian 27 March 2012 (has links)
Les critères de localisation et d’endommagement sont généralement basés sur un cadre dissipatif et ce travail s’intéresse aux couplages thermomécaniques accompagnant les micromécanismes de déformation. Il repose en partie sur des données expérimentales obtenues précédemment dans le laboratoire par Bodelot pour un polycristal d’acier A316L. Ce travail tire profit d'une combinaison de techniques différentes, en particulier de mesures in situ de champs cinématiques et thermiques ainsi que de l’Orientation Imaging Microscopy, de la profilométrie et d’une micrographie de surface. Différents outils ont été développés afin (1) d'identifier automatiquement les systèmes de glissement activés, (2) d’estimer l’émissivité de la surface permettant ainsi une détermination des champs thermiques avec une précision de 30 mK, (3) de projeter les champs bruts expérimentaux sur la microstructure et (4) de permettre la modélisation du polycristal et de ses conditions aux limites thermomécaniques réelles dans un cadre de plasticité cristalline dans le code EF Abaqus. Il a notamment été montré que les variations de température fournissent une estimation précise et aisée de la limite d'élasticité macroscopique ainsi que la détermination de la contrainte de cisaillement critique à l'échelle granulaire. En outre, les mesures cinématiques ont permis l'identification des systèmes de glissement activés. Des bilans énergétiques expérimentaux et numériques ont été réalisés et une grande influence de l'hétérogénéité polycristalline sur les mécanismes de stockage d’énergie a été soulignée. Les méthodes proposées contribueront à améliorer les critères d’endommagement basés sur un cadre dissipatif / Strain localization and damage criteria of materials and structures are commonly based on a dissipative framework and this work investigates the thermomechanical couplings accompanying the deformation micromechanisms. It is partly based on experimental data obtained previously in the laboratory by Bodelot for a A316L austenitic stainless steel polycrystal. This work takes profit of a multi-technique approach combining, in particular, in-situ kinematic and thermal fields measurements as well as Orientation Imaging Microscopy, profilometry and surface micrography. Different tools have been developed (1) to automatically identify the activated slip systems directly from the surface micrography, (2) to approach the surface emissivity field allowing an accurate determination of the thermal fields with a 30 mK precision, (3) to project raw experimental fields on the microstructure and (4) to allow the modeling of the polycrystal aggregate and its real thermomechanical boundary conditions by using a crystal plasticity framework within the Abaqus FE code. It has notably been shown that the temperature variations provides an easy and accurate estimation of the macroscopic yield stress at the specimen scale as well as the determination of the Critical Resolved Shear Stress at the intragranular scale. In addition, the local kinematic measurements allow the in-situ identification of the activated slip systems. Experimental and numerical energy balances have been conducted and a great influence of the polycrystalline heterogeneity on the energy storage mechanism has been underlined. The proposed methods would help improving physical based dissipative criteria for damage analysis
|
5 |
Développement et applications d’une technique de modélisation micromécanique de type "FFT" couplée à la mécanique des champs de dislocations / Development and application of « FFT » micromechanical modelization technique coupled to field dislocations mechanicsDjaka, Komlan Sénam 08 December 2016 (has links)
Dans ce mémoire, des méthodes spectrales basées sur la transformée de Fourier rapide ("fast Fourier transform" en anglais notée "FFT") sont développées pour résoudre les équations de champs et d’évolution des densités de dislocations polarisées ou géométriquement nécessaires dans la théorie de la mécanique des champs de dislocations ("Field Dislocations Mechanics" en anglais et notée "FDM") et de son extension phénoménologique et mésoscopique ("Phenomenological Mesoscopic Field Dislocations Mechanics" en anglais et notée "PMFDM"). Dans un premier temps, une approche spectrale a été développée pour résoudre les équations élasto-statiques de la FDM pour la détermination des champs mécaniques locaux provenant des densités de dislocations polarisées et des hétérogénéités élastiques présentes dans les matériaux de microstructure supposée périodique et au comportement élastique linéaire. Les champs élastiques sont calculés de façon précise et sans oscillation numérique même lorsque les densités de dislocations sont concentrées sur un seul pixel (pour les problèmes à deux dimensions) ou sur un seul voxel (pour les problèmes à trois dimensions). Ces résultats sont obtenus grâce à l’application de formules de différenciation spatiale pour les dérivées premières et secondes dans l’espace de Fourier basées sur des schémas à différences finies combinées à la transformée de Fourier discrète. Les résultats obtenus portent sur la détermination précise des champs élastiques des dislocations individuelles de types vis et coin, et des champs élastiques d’interaction entre des inclusions de géométries variées et différentes distributions de densités de dislocations telles que les dipôles ou les boucles de dislocations dans un matériau composite biphasé et des microstructures tridimensionnelles. Dans un second temps, une approche spectrale a été développée pour résoudre de façon rapide et stable l’équation d’évolution spatio-temporelle des densités de dislocations dans la théorie FDM. Cette équation aux dérivées partielles, de nature hyperbolique, requiert une méthode spectrale avec des filtres passe-bas afin de contrôler à la fois les fortes oscillations inhérentes aux approches FFT et les instabilités numériques liées à la nature hyperbolique de l’équation de transport. La validation de cette approche a été effectuée par des comparaisons avec les solutions exactes et les méthodes éléments finis dans le cadre de la simulation des phénomènes physiques d’annihilation ou d’extension/annihilation de boucles de dislocations. En dernier lieu, une technique numérique pour la résolution des équations de la PMFDM est développée dans le cadre d’une formulation FFT pour un comportement élasto-visco-plastique avec la prise en compte de la contribution des dislocations géométriquement nécessaires et statistiquement stockées ainsi que des conditions de saut de la distorsion plastique aux interfaces de type joint de grains ou joint de phases. Cette technique est par la suite appliquée à la simulation de la déformation plastique de structures modèles telles que des microstructures périodiques à canaux et des polycristaux métalliques / Fast Fourier transform (FFT)-based methods are developed to solve both the elasto-static equations of the Field Dislocation Mechanics (FDM) theory and the dislocation density transport equation of polarized or geometrically necessary dislocation (GND) densities for FDM and its mesoscopic extension, i.e. the Phenomenological Mesoscopic Field Dislocations Mechanics (PMFDM). First, a numerical spectral approach is developed to solve the elasto-static FDM equations in periodic media for the determination of local mechanical fields arising from the presence of both polarized dislocation densities and elastic heterogeneities for linear elastic materials. The elastic fields are calculated in an accurate fashion and without numerical oscillation, even when the dislocation density is restricted to a single pixel (for two-dimensional problems) or a single voxel (for three-dimensional problems). These results are obtained by applying the differentiation rules for first and second derivatives based on finite difference schemes together with the discrete Fourier transform. The results show that the calculated elastic fields with the present spectral method are accurate for different cases considering individual screw and edge dislocations, the interactions between inhomogeneities of various geometries/elastic properties and different distributions of dislocation densities (dislocation dipoles, polygonal loops in two-phase composite materials). Second, a numerical spectral approach is developed to solve in a fast, stable and accurate fashion, the hyperbolic-type dislocation density transport equation governing the spatial-temporal evolution of dislocations in the FDM theory. Low-pass spectral filters are employed to control both the high frequency oscillations inherent to the Fourier method and the fast-growing numerical instabilities resulting from the hyperbolic nature of the equation. The method is assessed with numerical comparisons with exact solutions and finite element simulations in the case of the simulation of annihilation of dislocation dipoles and the expansion/annihilation of dislocation loops. Finally, a numerical technique for solving the PMFDM equations in a crystal plasticity elasto-viscoplastic FFT formulation is proposed by taking into account both the time evolutions of GND and SSD (statistically stored dislocations) densities as well as the jump condition for plastic distortion at material discontinuity interfaces such as grain or phase boundaries. Then, this numerical technique is applied to the simulation of the plastic deformation of model microstructures like channel-type two-phase composite materials and of polycrystalline metals
|
6 |
Alliages à grains ultrafins et bimodaux : approche couplée expérience-modélisation basée sur la microstructure / Ultrafine grained and bimodal alloys : a coupled experimental-numerical approach based on the microstructureFlipon, Baptiste 22 October 2018 (has links)
Ce travail porte sur l'élaboration et l'analyse du comportement mécanique d'alliages à distribution bimodale de taille de grains. Les applications concernent les aciers inoxydables austénitiques 304L et 316L. Une approche couplée expérience-modélisation est menée pour comprendre les réponses mécaniques macroscopiques et locales de ces nouveaux alliages en se basant notamment sur l'étude des mécanismes de déformation associés. L'utilisation de deux voies d'élaboration et l'optimisation de leurs paramètres a conduit à l'obtention d'un large choix d'échantillons avec différentes distributions bimodales et différentes proportions de chaque famille de taille de grains. L'influence de ces caractéristiques microstructurales sur le comportement a été analysée sur la base d'essais en traction simple sous chargement monotone ou en charges-décharges alternées. Une base de données étendue de propriétés a ainsi été constituée et des éléments de réponse concernant les mécanismes de déformation propres aux alliages bimodaux ont pu être apportés. La présence de grains de taille conventionnelle (Coarse Grain -CG) au sein d'une matrice à grains ultrafins (UltraFine Grain - UFG) semble favoriser la relaxation d'une partie des contraintes internes de la matrice et tend ainsi à retarder l'endommagement des alliages bimodaux en comparaison aux alliages unimodaux à grains ultrafins. Une modélisation à champs complets selon deux lois de plasticité cristalline tenant compte explicitement d'une longueur interne a été proposée. Sa première motivation est de fournir un outil de prédiction du comportement effectif des alliages bimodaux en fonction de leurs caractéristiques microstructurales. Elle donne par ailleurs accès aux champs locaux et permet d'appuyer les analyses expérimentales en partition des contraintes en montrant à la fois une relaxation partielle des contraintes dans la matrice UFG mais aussi des concentrations de contrainte aux interfaces CG/UFG. / This work is focused on the elaboration and the mechanical behaviour of 304L and 316L austenitic stainless steel alloys with bimodal grain size distribution. The complementary approach between experiments and modelling enables a better understanding of both macroscopic and local mechanical responses and also of the associated deformation mechanisms.The use of two elaboration routes and optimized process parameters results in a wide range of samples with different bimodal grain size distributions. Grain sizes and fractions of each population are modified in order to study the influence of these microstructural characteristics on mechanical behavior. Uniaxial tensile tests are used to realize a database of mechanical properties of bimodal alloys and loading-unloading tests provides valuable informations about deformation mechanisms in these materials. With coarse grains (CG) embedded in an ultrafine grained (UFG) matrix, a relaxation of a part of the internal stresses seems to take place and leads to a delayed embrittlement of bimodal alloys as compared to their unimodal counterparts. Full-field modelling, based on two crystal plasticity laws with an explicit account of an internal length, is proposed. It constitutes a valuable prediction tool of effective properties of bimodal alloys in order, in particular, to study the effect of several microstructural characteristics. An access to local fields is also possible and tend, so far, to show similar results compared to experimental ones : stress relaxation is observed in the UFG matrix as well as stress concentrations at the CG/UFG interfaces.
|
Page generated in 0.0845 seconds