• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 265
  • 105
  • 78
  • 44
  • 41
  • 32
  • 16
  • 12
  • 11
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • Tagged with
  • 685
  • 101
  • 91
  • 90
  • 89
  • 78
  • 70
  • 70
  • 64
  • 51
  • 51
  • 48
  • 44
  • 44
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Resistive Switching in Porous Low-k Dielectrics

Ali, Rizwan 05 June 2018 (has links)
Integrating nanometer-sized pores into low-k ILD films is one of the approaches to lower the RC signal delay and thus help sustain the continued scaling of microelectronic devices. While increasing porosity of porous dielectrics lowers the dielectric constant (k), it also creates many reliability and implementation issues. One of the problems is the little understood metal ion diffusion and drift in porous media. Here, we present a rigorous simulation method of Cu diffusion based on Master equation with elementary jump probabilities within the contiguous dielectric film, along the pore boundary, from the dielectric matrix to the pore boundary, and from the pore boundary to the matrix material. In view of the diffusional jump distance being as large as 2 nm, the nano-pores being on a similar length scale, and the film thickness being only a few tens of nanometers, the conventional diffusion equation in differential equation form is grossly inadequate and elementary jump frequencies are required for a proper description of the Cu diffusion in porous dielectric. The present atomistic approach allows a consistent implementation of Cu ion drift in electric field by lowering and raising of the diffusion barriers along the field direction. This will help understand the behavior of Cu interconnects under thermal or electric stress at an atomistic level. Another approach to lower the increasing RC delays is to bring memory and logic closer by integrating memory in the BEOL. Resistive RAM is one such memory is not transistor based and thus, does not require a silicon substrate. Thus, it offers the possibility of integration directly into the back-end reducing memory to logic distance from 1000s of µm to a 10s of nm. This 3D integration also allows for increased density as well. However, one barrier in the implementation of RRAM in the back end is the use of expensive as well as non-BEOL native material in conventional Cu/TaOx/Pt resistive devices. In this thesis, we present our research about functionality of RRAM with porous low-k dielectrics (which are a candidate for CMOS ILD), and through the similar elementary jump simulations, discuss the impact of porosity in dielectrics on the functionality of RRAM. Lastly, we present a cheaper replacement for Pt as the counter electrode in RRAM and show that it functions as good as Pt. This work addresses following three areas: 1. Modeling of diffusion in porous dielectrics through elementary jump based simulation. The model is based on random walk theory of elementary particle jumps. Initially, qualitative simulations are conducted without actual parameters. It is shown that Cu diffusion in porous dielectrics decreases quasi-linearly with porosity. Furthermore, it is shown that morphology of the pores may have a greater effect on diffusivity compared to porosity. The simulations are then calibrated with parameters, and the result is shown to yield a similar diffusivity times as actual process time. 2. Modeling of Cu ions drift in porous dielectrics under electric stress. First, the model is explained, and then qualitative simulation results are presented for porous dielectrics with varied porosities and morphologies. 3. Research to find a suitable replacement for Pt as the counter electrode in RRAM devices. The research methodology is discussed and a much cheaper Rh is selected as the potential replacement for Pt. Successful functionality of Rh based resistive devices is presented. / Master of Science
132

Equilibrium and Kinetic Behavior of the y/β Interphase Boundary in Cu-Zn. Alloys

Stephens, Donald 12 1900 (has links)
<P> The equilibrium behavior of the boundaries separating the a and y crystalline phases in the copper zinc alloy system is investigated by measuring the magnitude, the relative anisotropy and the temperature dependence of the interfacial energies. A model, consistent with the interfacial energetics, is proposed and supported by observations of misfit dislocations at the boundary. The migration kinetics of the y/β interface are determined for both dendritic and polyhedral morphologies and the atomic mechanisms of growth are inferred from the. internally faulted ordered y precipitates. </p> / Thesis / Doctor of Philosophy (PhD)
133

Application of UV-Vis Spectroscopy to the Monitoring, Characterization and Analysis of Chemical Equilibria of Copper Etching Baths

Lambert, Alexander S. 08 1900 (has links)
The continuously increasing demand for innovation in the miniaturization of microelectronics has driven the need for ever more precise fabrication strategies for device packaging, especially for printed circuit boards (PCBs). Subtractive copper etching is a fundamental step in the fabrication process, requiring very precise control of etch rate and etch factor. Changes in the etching chemical equilibrium have significant effects on etching behavior, and CuCl2 / HCl etching baths are typically monitored with several parameters including oxidation-reduction potential, conductivity, and specific gravity. However, the etch rate and etch factor can be difficult to control even under strict engineering controls of those monitoring parameters. The mechanism of acidic cupric chloride etching, regeneration and recovery is complex, and the current monitoring strategies can have difficulty controlling the interlocking chemical equilibria. A complimentary tool, thin-film UV-Vis spectroscopy, can be utilized to improve the current monitoring strategies, as UV-Vis is capable of identifying and predicting etching behavior that the current standard methodologies have difficulty predicting. Furthermore, as a chemically-sensitive probe, UV-Vis can investigate the complex changes to the chemical equilibrium and speciation of the etch bath, and can contribute overall to significant improvements in the control of the copper etching system in order to meet the demands of next-level design strategies.
134

Characterization of the Metal Binding Properties of De Novo Designed Coiled Coil Metalloproteins

Zhu, Xianchun 10 March 2009 (has links)
No description available.
135

Comparative Study of Alternative Fuel Icing Inhibitor Additive Properties and Chemical Analysis of Metal Speciation in Aviation Fuels

Taylor, Kevin Brian 12 August 2010 (has links)
No description available.
136

Electroless Deposition of Copper and Copper-Manganese Alloy for Application in Interconnect Metallization

Yu, Lu 12 June 2014 (has links)
No description available.
137

Infrared Processed Copper-Tungsten Carbide Composites

Deshpande, Pranav Kishore 16 September 2002 (has links)
No description available.
138

Chip package interaction (CPI) and its impact on the reliability of flip-chip packages

Zhang, Xuefeng 01 June 2010 (has links)
Chip-package interaction (CPI) has become a critical reliability issue for flip-chip packaging of Cu/low-k chip with organic substrate. The thermo-mechanical deformation and stress develop inside the package during assembly and subsequent reliability tests due to the mismatch of the coefficients of thermal expansion (CTEs) between the chip and the substrate. The thermal residual stress causes many mechanical reliability issues in the solder joints and the underfill layer between die and substrate, such as solder fatigue failure and underfill delamination. Moreover, the thermo-mechanical deformation of the package can be directly coupled into the Cu/low-k interconnect, inducing large local stresses to drive interfacial crack formation and propagation. The thermo-mechanical reliability risk is further aggravated with the implementation of ultra low-k dielectric for better electrical performance and the mandatory change from Pb-containing solders to Pb-free solders for environmental safety. These CPI-induced reliability issues in flip-chip packaging of Cu/low-k chips are investigated in this dissertation at both chip level and package level using high-resolution Moiré interferometry and Finite Element Analysis (FEA). Firstly, the thermo-mechanical deformation in flip-chip packages is analyzed using high-resolution Moiré interferometry. The effect of underfill properties on package warpage is studied and followed by a strategy study of proper underfill selection to improve solder fatigue life time and reduce the risk of interfacial delamination in underfill and low-k interconnects under CPI. The chip-package interaction is found to maximize at the die attach step during assembly and becomes most detrimental to low-k chip reliability because of the high thermal load generated by the solder reflow process before underfilling. A three-dimensional (3D) multilevel sub-modeling method combined with modified virtual crack closure (MVCC) technique is employed to investigate the CPI-induced interfacial delamination in Cu/low-k interconnects. It is first focused on the effects of dielectrics and solder materials on low-k interconnect reliability and then extended to the scaling effect where the reduction of the interconnect dimension is accompanied with an increased number of metal levels and the implementation of ultralow-k porous dielectrics. Recent studies on CPI-induced crack propagation in the low-k interconnect and the use of crack-stop structures to improve the chip reliability are also discussed. Finally, 3D integration (3DI) with through silicon vias (TSV) has been proposed as the latest solution to increase the device density without down-scaling. The thermo-mechanical reliability issues facing 3DI are analyzed. Three failure modes are proposed and studied. Design optimization of 3D interconnects to reduce the thermal residual stress and the risks of fracture and delamination are discussed. / text
139

Dépôt chimique en phase vapeur d'Al, Cu et Fe en vue d'élaboration de films composés de phases intermétalliques / Chemical vapor deposition of Al, Cu and Fe in view of the processing of intermetallic phases containing films

Aloui, Lyacine 02 October 2012 (has links)
Des films et revêtements composés de phases et composés intermétalliques présentent des propriétés et des combinaisons de propriétés attractives qui ne sont que très partiellement explorées aujourd’hui. Ils sont porteurs de solutions potentielles pour conférer à des matériaux avancés des multifonctionnalités nécessaires dans pratiquement toutes les industries manufacturières et deviennent ainsi source de rupture et d’innovation. Cette situation prévaut pour le système Al-Cu-Fe, au sein duquel même les binaires à base d’Al présentent des propriétés remarquables. Si des techniques de dépôt physique en phase vapeur sont le plus souvent utilisées pour l’élaboration de tels films et revêtements métalliques, l’utilisation de procédés de dépôt chimique en phase vapeur à partir de précurseurs métalorganiques (MOCVD) permettrait à terme le traitement et la fonctionnalisation de surfaces de géométrie complexe. Le présent travail s’inscrit dans cette logique. Il vise la mise au point de procédés MOCVD de films d’Al, de Cu et de Fe. Ces procédés doivent être compatibles afin de constituer la base pour l’élaboration de protocoles complexes permettant le codépôt ou le dépôt séquentiel de ces éléments. La MOCVD d’Al à partir de dimethylethyl amine alane (DMEAA) a été adaptée pour satisfaire les contraintes de codépôt, pour valider le dispositif expérimental utilisé pour le dépôt des films unaires et binaires, pour valider certains aspects mécanistiques du dépôt et pour illustrer la capacité de la technique de couvrir de manière conforme des surfaces de géométrie complexe. Le protocole mise au point permet d’opérer à une pression de 10 Torr, dans une fenêtre de températures entre 160 °C et 240 °C. La modélisation du procédé permet son optimisation dans ces conditions, conduisant à des films d’épaisseur uniforme sur une surface de diamètre 58 mm. La microstructure désordonnée des films est améliorée par un prétraitement plasma des substrats d’acier 304L in situ avant dépôt.Le besoin d’utiliser des précurseurs de Cu et de Fe exemptes d’oxygène (en vue d’un codépôt avec Al) a conduit à tester pour ces deux éléments la famille originale des composés moléculaires à base de ligands amidinates. Il est montré que des films purs de Cu sont obtenus entre 200 °C et 350 °C à partir de [Cu(i-Pr-Me-AMD)]2 dans une phase gazeuse riche en hydrogène, la limite entre les régimes cinétique et diffusionnel étant à 240 °C. Le criblage de précurseurs analogues pour Fe a révélé que, dans les mêmes conditions, le composé [Fe(tBu-MeAMD)2] conduit à des films contenant Fe, Fe4N ainsi qu’à des carbures Fe3C et Fe4C.Des bicouches de Cu et Al ont été déposées à partir des protocoles mis au point. Leur recuit post dépôt a été suivi in situ par diffraction de rayons X et par mesure de la résistance électrique. Il a permis de stabiliser des phases θ-Al2Cu, η-AlCu et, pour la première fois reportée dans la littérature, de la phase approximante γ-Al4Cu9. Il a été démontré que la technique MOCVD associée avec des recuits post dépôt est une méthode appropriée pour obtenir des films composés d’alliages intermétalliques. Des dépôts conformes de tels films peuvent ainsi être envisagés pour des nombreuses applications. / Films and coatings intermetallic phases and intermetallic compounds present proprieties and combination of proprieties which are just partially explored today. They carry potential solutions to confer multifunctionality for advanced materials needed by industries and become a source of disruption and innovation. This situation prevails for the Al-Cu-Fe, in which even the binary Al-based exhibit remarkable properties. While techniques of physical vapor deposition are most often used for the development of such films and metallic coatings, the use of processes of chemical vapor deposition from metallorganic precursors (MOCVD) lead to the treatment and functionalization of surfaces with complex geometry. The present work joins in this logic.It aims at the development of MOCVD processes of Al, Cu and Fe films. These processes must be compatible to constitute the base for the elaboration of complex protocols allowing the codeposition or the sequential deposition of these elements. The MOCVD of Al from dimethylethyl amine alane (DMEAA) was adapted to satisfy the constraints of codeposition to validate the experimental device. Used for the deposition of unary and binary films, to validate certain aspects mechanistic of the deposition and to illustrate the capacity of the technique to cover in a shape way surfaces of complex geometry. The protocol development allows to operate at pressure of 10 Torr, in a window of temperatures between 160 °C and 240 °C. The modeling of the process allows its optimization in these conditions, leading to films with uniform thickness. The disorderly microstructure of these films is improved by a plasma pretreatment of the substrate of 304L steel in situ before deposition. The need to use precursors of Cu and Fe-free oxygen (for a co-deposition with Al) has led to testing for these two elements the original family of molecular compounds based ligands AMIDINATES. It is shown that pure Cu films are obtained between 200 ° C and 350 ° C from [Cu (i-Pr-Me-AMD)]2 in a gaseous phase rich in hydrogen, the boundary between the kinetic schemes and diffusion regyme being at 240 ° C. Screening similar to Fe precursors revealed that, under the same conditions, the compound [Fe (tBu-MeAMD)2] leads to films containing Fe, as well as Fe4N carbides Fe3C and Fe4C. Bilayers of Cu and Al were deposited from the protocols developed. Their post deposition annealing was followed by in situ X-ray diffraction and by measuring the electrical resistance. It has stabilized θ-Al2Cu, η-AlCu phases and, for the first time reported in the literature, the approximant phase γ-Al4Cu9. It was demonstrated that the MOCVD technique associated with post-deposition annealing is a suitable method to obtain films composed of intermetallic alloys. Deposits conform such films can thus be considered for many applications.
140

Efeito do processo de solidificação, deformação plástica e recristalização sobre o comportamento eletroquímico da liga Al-4,5% p.Cu em soluções aquosas / Effect of the solidification, plastic deformation and recrystallizaton on the electrochemical behavior of Al-4.5 % wt. Cu alloy in aqueous medium

Lourenço, Julio Cesar 25 November 2016 (has links)
A liga binária Al-Cu é a base para todas as ligas da série 2xxx que são de grande importância em diversas aplicações como na indústria aeronáutica, transporte, máquinas e equipamentos. No entanto, pouco se conhece sobre os efeitos do tipo de solidificação desta liga e da deformação plástica sobre sua resistência à corrosão em meio aquoso. O escopo deste trabalho foi procurar correlacionar microestruturas da liga Al-4,5%p.Cu solidificada de maneira convencional e unidirecional vertical ascendente (brutas de fusão, deformadas plasticamente por forjamento rotativo a frio, e tratadas termicamente visando recristalização), orientações preferenciais de grãos com as características de resistência à corrosão. Foram utilizadas técnicas de microscopia eletrônica de varredura e óptica, difratometria de raios X e ensaios eletroquímicos em soluções de NaCl 0,6 M e Na2SO4 0,1M por polarização potenciodinâmica e espectroscopia de impedância eletroquímica. A taxa de corrosão foi maior em solução de NaCl 0,6 M do que em Na2SO4 0,1M para todas as amostras. O aumento da redução por deformação plástica conduziu a uma diminuição da resistência à corrosão da liga devido ao aumento das tensões internas e ao aparecimento de orientações preferenciais dos grãos de menor densidade planar como (200) e (220). As amostras recristalizadas apresentaram de uma forma geral uma resistência maior quando comparada às amostras não recristalizadas, comportamento atribuído ao alívio de tensões internas e ao desaparecimento da orientação preferencial do plano menos denso (220). / The binary Al-Cu alloy is the basis for all AA2xxx alloys, being important in several applications as aeronautical industry, transportation, machines and equipments. However, few is known about the effect of the type of solidification of this alloy and plastic deformation on the corrosion resistance in aqueous medium. The scope of this work was to correlate microstructures of the Al-4.5 % wt. Cu alloy solidified under conventional and upward direct chilling conditions (as cast condition, plastic formed by cold swaging, and heat treated seeking recristallyzation), crystallographic orientations and corrosion resistance characteristics. Scanning electron microscopy and optical, X ray diffractometry techniques and electrochemical measurements in NaCl 0,6 M and Na2SO4 0,1 M potentiodynamic polarization and electrochemical impedance spectroscopy were used. The corrosion rate in NaCl 0,6 M was higher than in Na2SO4 0,1 M for all samples. The increase of the plastic deformation led to alloy corrosion resistance decrease, due to the internal stresses increase and the arising of less dense grain preferred orientations of lower planar density as (200) and (220) orientations. The recristallyzed samples presented in a general way a higher corrosion resistance, when compared to the non recristallyzed samples, being imputed to the internal tension relieve and the extinction of the plane (220) of lower planar density to a structure of random orientation.

Page generated in 0.0258 seconds