• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 10
  • 5
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 182
  • 84
  • 40
  • 39
  • 38
  • 37
  • 35
  • 33
  • 26
  • 25
  • 21
  • 21
  • 17
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Software based memory correction for a miniature satellite in low-Earth orbit / Mjukvarustyrd rättning av minnesfel för en miniatyrsatellit i låg omloppsbana

Wikman, John, Sjöblom, Johan January 2017 (has links)
The harsh radiation environment of space is known to cause bit flips in computer memory. The conventional way to combat this is through error detection and correction (EDAC) circuitry, but for low-budget space missions software EDAC can be used. One such mission is the KTH project Miniature Student Satellite (MIST), which aims to send a 3U CubeSat into low-Earth orbit. To ensure a high level of data reliability on board MIST, this thesis investigates the performance of different types of EDAC algorithms. First, a prediction of the bit flip susceptibility of DRAM memory in the planned trajectory is made. After that, data reliability models of Hamming and Reed-Solomon (RS) codes are proposed, and their respective running times on the MIST onboard computer are approximated. Finally, the performance of the different codes is discussed with regards to data reliability, memory overhead, and CPU usage. The findings of this thesis suggest that using an EDAC algorithm would greatly increase the data reliability. Among the codes investigated, three good candidates are RS(28,24), RS(196,192) and RS(255,251), depending on how much memory overhead can be accepted. / Rymdens strålningsmiljö är känd för att orsaka bitflippar i datorminnen.Vanligtvis motverkas detta genom att felrättande hårdvara installeraspå satelliten, men för lågkostnadssatelliter kan rättningen iställetskötas i mjukvaran. Ett exempel på en sådan satellit är KTH-projektetMiniature Student Satellite (MIST), vars mål är att skicka upp en 3UCubeSat i låg omloppsbana. Den här uppsatsen undersöker hur olika felrättningsalgoritmer kananvändas för att skydda data ombord på satelliten från att bli korrupt. Först görs en uppskattning av hur strålningskänsliga DRAM minnenär i den planerade omloppsbanan. Därefter föreslås datakorruptionsmodellerför Hamming- och Reed-Solomonkoder (RS) tillsammans meden uppskattning av deras respektive körtider på satellitens omborddator. Slutligen diskuteras de föreslagna koderna med hänsyn till datakorruptionsskydd,minnesanvändning och processoranvändning. Uppsatsens slutsats indikerar att användandet av felrättningsalgoritmerkraftigt minskar risken för datakorruption. Bland de kodersom undersökts framstår RS(28,24), RS(196,192) och RS(255,251) somde bästa alternativen, beroende på hur mycket extra minnesanvändningsom är acceptabelt.
162

Academic cubesat development methodologies. : The cases of CREME and APTAS

Sarille Cadenas, Carlos January 2023 (has links)
Since 2003, when the first batch of academic Cubesats was launched, 463 of these satellites havereached orbit. The issues faced in the early years were documented and since then the marketof Commercial off-the-shelf components, launch brokers and other auxiliary companies hassky-rocketed. Despite of the popularization of this educational satellites, or perhaps becauseof it, the rate of failures in this type of Cubesats kept constant over the years.The first part of this thesis explores the issues associated with development of academiccubesats found in literature, as well as the good practices and recommendations given by theteams. The studied works are divided in periods in order to examine possible trends in thetypes of issues and good practices reported.The document continues with an introduction to new paradigms and methodologies for ProjectManagement and Systems Engineering, paying special attention to Agile methodologies andMBSE and how they are, or could be applied, to academic Cubesat projects to mitigate thecommon issues and implement good practices.The use case of Cubesat for Radiation Environment Monitoring Experiment, the project wherethe author did his Master’s internship, is used to introduce the Time and Space Partitioningarchitecture in embedded systems, a very interesting approach that provides more reliabilitythan usual approaches and some project management benefits.Finally the use case of APTAS, another academic Cubesat project where the author wasinvolved, is used to illustrate how the issues and good practices mentioned in the first sectionaffect projects. This is achieved by extracting metrics about student engagement, turnoverratios and a thorough examination of the internal resources of the project.
163

Characterization of Multi Plate Field Mill for Lunar Deployment

Forssén, Clayton January 2018 (has links)
During the Apollo 10 and 17 missions NASA astronauts reported that they saw streamers emanating from the surface of the moon. They concluded that the streamers were produced by light scattering from dust particles. The particles are believed to be transported by an ambient electric field. This theorized electric field has never been measured directly, although the electric potential on the surface and above it has. The exact behavior and origin of the electric field is unknown, but has been approximated to be between 1 and 12 V/m. To measure this electrical field a new type of instrument, called Multi Plate Field Mills (MPFM) has been developed. This type of instrument is capable of measuring both the amplitude and directionality of the electrical field. Three of these instruments will be mounted on a 1U CubeSat to be lunched with the PTS mission to the moon scheduled to Q4 2019. In this work the MPFM were characterized. The precision of the instrument for electrical fields applied along the z, y and x axis was found to be 0.6, 1.3, 1.4 (V/m)/(Hz)^(1/2) respectively for measurements in air and 0.14, 0.6, 0.6 (V/m)/(Hz)^(1/2) for measurements in vacuum. This sensitivity outperforms the current state of the art Field Mills and, in addition to that, it provides an assessment of the directionality of the electrical field. / Umeå Lunar Venture
164

Student Rocket Experiment B2D2 - Power System

Jansson, Albert, Lezdins, Andreas January 2020 (has links)
The B2D2 student experiment aims to study theEarth magnetic field by releasing a free falling unit (FFU) from asounding rocket. The power system of the FFU needs to supply allsubsystems with sufficient power and energy during the flight.This is achieved with two lithium cells and voltage regulatorsthat produce the required voltages and can deliver the necessarycurrent. The voltage regulators are tested on prototype PCBsand their performance evaluated. An attitude determination andcontrol system is needed to stabilise the FFU after release. Motordrive systems are custom designed for this purpose. The powerconsumption of the FFU is computer-simulated based on mea-surements on existing hardware. According to tests conducted,switching regulator designs with inductors are the best candidatesfor the power system. The chosen designs have sufficient marginsin current capacity to power the experiment during the durationof the mission with the chosen battery cells. / Målet med studentexperimentet B2D2 är att studera det jordmagnetiska fältet genom att släppa en experimentmodul från en sondraket. Strömförsörjningssystemet i experimentmodulen behöver kunna leverera tillräcklig strömstyrka och energi till alla delsystem under experimentets varaktighet. Detta åstadkoms med två litiumceller och spänningsomvandlare som producerar de spänningar som behövs vid den strömstyrka som krävs. Spänningsomvandlarna testas på prototypkort för att utvärdera deras prestanda. Ett attitydkontrollsystem behövs för att stabilisera experimentenheten efter dess att den släppts. Till detta attitydkontrollsystem utvecklas ett motordrivsystem. Strömförbrukningen av experimentenheten simulerades utifrån mätningar på existerande hårdvara. Utifrån utförda tester bedöms de induktorbaserade switchande spänningsomvandlarna vara de lämpligaste. De valda kretsdesignerna har tillräcklig strömkapacitetsmarginal för att kunna strömförsörja experimentenheten under experimentets varaktighet med de valda battericellerna. / Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
165

The design and development of an ADCS OBC for a CubeSat

Botma, Pieter Johannes 12 1900 (has links)
Thesis (MScEng)--Stellenbosch University, 2011. / ENGLISH ABSTRACT: The Electronic Systems Laboratory at Stellenbosch University is currently developing a fully 3-axis controlled Attitude Determination and Control Subsystem (ADCS) for CubeSats. This thesis describes the design and development of an Onboard Computer (OBC) suitable for ADCS application. A separate dedicated OBC for ADCS purposes allows the main CubeSat OBC to focus only on command and data handling, communication and payload management. This thesis describes, in detail the development process of the OBC. Multiple Microcontroller Unit (MCU) architectures were considered before selecting an ARM Cortex-M3 processor due to its performance, power efficiency and functionality. The hardware was designed to be as robust as possible, because radiation tolerant and redundant components could not be included, due to their high cost and the technical constraints of a CubeSat. The software was developed to improve recovery from lockouts or component failures and to enable the operational modes to be configured in real-time or uploaded from the ground station. Ground tests indicated that the OBC can handle radiation-related problems such as latchups and bit-flips. The peak power consumption is around 500 mW and the orbital average is substantially lower. The proposed OBC is therefore not only sufficient in its intended application as an ADCS OBC, but could also stand in as a backup for the main OBC in case of an emergency. / AFRIKAANSE OPSOMMING: Die Elektroniese Stelsels Laboratorium by die Universiteit van Stellenbosch is tans besig om ’n volkome 3-as gestabiliseerde oriëntasiebepaling en -beheerstelsel (Engels: ADCS) vir ’n CubeSat te ontwikkel. Hierdie tesis beskryf die ontwerp en ontwikkeling van ’n aanboordrekenaar (Engels: OBC) wat gebruik kan word in ’n ADCS. ’n Afsonderlike OBC wat aan die ADCS toegewy is, stel die hoof-OBC in staat om te fokus op beheer- en datahantering, kommunikasie en loonvragbestuur. Hierdie tesis beskryf breedvoerig die werkswyse waarvolgens die OBC ontwikkel is. Verskeie mikroverwerkers is as moontlike kandidate ondersoek voor daar op ’n ARM Cortex-M3-gebaseerde mikroverwerker besluit is. Hierdie mikroverwerker is gekies vanweë sy spoed, effektiewe kragverbruik en funksionaliteit. Die hardeware is ontwikkel om so robuust moontlik te wees, omdat stralingbestande en oortollige komponente weens kostebeperkings, asook tegniese beperkings van ’n CubeSat, nie ingesluit kon word nie. Die programmatuur is ontwikkel om van ’n uitsluiting en ’n komponentfout te kan herstel. Verder kan programme wat tydens vlug in werking is, verstel word en vanaf ’n grondstasie gelaai word. Grondtoetse het aangedui dat die OBC stralingverwante probleme, soos ’n vergrendeling (latchup) of bis-omkering (bit-flip), kan hanteer. Die maksimum kragverbruik is ongeveer 500 mW en die gemiddelde wentelbaankragverbruik is beduidend kleiner. Die voorgestelde OBC is dus voldoende as ADCS OBC asook hoof-OBC in geval van nood.
166

Development of Safety Standards for CubeSat Propulsion Systems

Cheney, Liam Jon 28 February 2014 (has links)
The CubeSat community has begun to develop and implement propulsion systems. This movement represents a new capability which may satisfy mission needs such as orbital and constellation maintenance, formation flight, de-orbit, and even interplanetary travel. With the freedom and capability granted by propulsion systems, CubeSat providers must accept new responsibilities in proportion to the potential hazards that propulsion systems may present. The Cal Poly CubeSat program publishes and maintains the CubeSat Design Specification (CDS). They wish to help the CubeSat community to safety and responsibly expand its capabilities to include propulsive designs. For this reason, the author embarked on the task of developing a draft of safety standards CubeSat propulsion systems. Wherever possible, the standards are based on existing documents. The author provides an overview of certain concepts in systems safety with respect to the classification of hazards, determination of required fault tolerances, and the use of inhibits to satisfy fault tolerance requirements. The author discusses hazards that could exist during ground operations and through launch with respect to hazardous materials and pressure systems. Most of the standards related to Range Safety are drawn from AFSPCMAN 91-710. Having reviewed a range of hypothetical propulsion system architectures with an engineer from Range Safety at Vandenberg Air Force Base, the author compiled a case study. The author discusses many aspects of orbital safety. The author discusses the risk of collision with the host vehicle and with third party satellites along with the trackability of CubeSats using propulsion systems. Some recommendations are given for working with the Joint Functional Component Command for Space (JFCC SPACE), thanks to the input of two engineers who work with the Joint Space Operations Center (JSpOC). Command Security is discussed as an important aspect of a mission which implements a propulsion system. The author also discusses End-of-Life procedures such as safing and de-orbit operations. The orbital safety standards are intended to promote “good citizenship.” The author steps through each proposed standard and offers justification. The author is confident that these standards will set the stage for a dialogue in the CubeSat community which will lead to the formulation of a reasonable and comprehensive set of standards. The author hopes that the discussions given throughout this document will help CubeSat developers to visualize the path to flight readiness so that they can get started on the right foot.
167

AN ATTITUDE DETERMINATION SYSTEM WITH MEMS GYROSCOPE DRIFT COMPENSATION FOR SMALL SATELLITES

Bezold, Maxwell 01 January 2013 (has links)
This thesis presents the design of an attitude determination system for small satellites that automatically corrects for attitude drift. Existing attitude determination systems suffer from attitude drift due to the integration of noisy rate gyro sensors used to measure the change in attitude. This attitude drift leads to a gradual loss in attitude knowledge, as error between the estimated attitude and the actual attitude increases. In this thesis a Kalman filter is used to complete sensor fusion which combines sensor observations with a projected attitude based on the dynamics of the satellite. The system proposed in this thesis also utilizes a novel sensor called the stellar gyro to correct for the drift. The stellar gyro compares star field images taken at different times to determine orientation, and works in the presence of the sun and during eclipse. This device provides a relative attitude fix that can be used to update the attitude estimate provided by the Kalman filter, effectively compensating for drift. Simulink models are developed of the hardware and algorithms to model the effectiveness of the system. The Simulink models show that the attitude determination system is highly accurate, with steady state errors of less than 1 degree.
168

The development of Sun and Nadir sensors for a solar sail CubeSat

Loubser, Hanco Evert 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: This thesis describes the development of attitude sensors required for the Attitude Determination and Control System (ADCS) for a Cubesat. The aim is to find the most suitable sensors for use on a small picosatellite by implementing miniaturised sensors with available commercial-off-the-shelf (COTS) technology. Specifically, the algorithms, hardware prototypes, software and filters required to create accurate sensors to determine the 3-axis orientation of a CubeSat are discussed. / AFRIKAANSE OPSOMMING: Hierdie tesis beskryf die ontwikkeling van oriëntasiesensors wat benodig word vir die oriëntasiebepaling en -beheerstelsel (Engels: ADCS) van ’n CubeSat. Die doelwit is om sensors te vind wat die geskikste is om in ’n klein picosatelliet te gebruik, deur miniatuursensors met kommersiële maklik verkrygbare tegnologie (Engels: COTS technology) te implementeer. Daar word in die bespreking veral aandag geskenk aan die algoritmes, hardewareprototipes, programmatuur en filters wat benodig word om akkurate sensors te skep wat op hul beurt 3-as oriëntasie van die CubeSat kan bepaal.
169

An analogue controlled switch-mode power system for a CubeSat

Mutch, Gavin Alexander January 2013 (has links)
Thesis presented in ful lment of the requirements for the degree of Magister Technologiae in Electrical Engineering at the Cape Peninsula University of Technology, 2013 / The power system is essentially one of the most critical subsystems to any satellite, without some form of power system a satellite would simply cease to function. The research within these pages investigates the areas pertaining to satellite power systems with the main focus towards the CubeSat platform. The end objective of this research was the development of a reliable analogue based switch-mode power system for a CubeSat. The research began with an investigation into the CubeSat platform, the space environment and a basic overview of a satellite and its systems. The research then focussed on satellite power systems, focussing primarily on satellite power system topologies and switch-mode power systems. Various components and concepts surrounding the satellite power system were investigate and included the photovoltaic (PV) solar cell, batteries, satellite power system topologies, protection concepts and typical CubeSat power systems. The nal part of the literature review included research into typical CubeSat power systems. The space environment complicates the design of satellite systems. The developed electrical power system harnessed electrical power from a PV solar panel by means of a fractional opencircuit voltage (FOCV) based maximum power point tracker (MPPT) with the use of a SEPIC DC-DC converter. The use of a SEPIC DC-DC converter allowed the system to operate at a greater e ciency than could be expected from linear designs. The requirement for an e cient system was important as the heat generated by the power system could bring rise to dissipation issues, resulting in over-heating of various components. The design took into account component sizing, as larger components would be more prone to damage during the high accelerations and vibrations associated with being launched into space. The use of a MPPT allowed the power system to better utilise the available PV solar panel power, by maintaining the PV solar panel near its optimum operating voltage. The design slid between MPPT and voltage regulation to harness as much power as possible while not over-charging the Lithium polymer battery. The power system consisted of battery under-voltage protection as well as over-current protection for the attached payloads and satellite subsystems. The SEPIC DC-DC converter was selected over other SMPS topologies, as this topology could be used in a 1U and 3U CubeSat with a wide variety of PV solar panel cell con gurations. The bene ts of this SMPS topology are due to the SEPIC DC-DC converter's ability to produce an output voltage greater than, less than or equal to the input voltage (National Semiconductor, 2008; Texas Instruments, 2008a). This, along with the operation of the FOCV based MPPT, allowed the power system to be very exible. The designed FOCV based MPPT could be pre-set to di ering PV solar cell technologies due to the adjustable ratio between the maximum power point voltage, Vmpp, and the open-circuit voltage, Voc of the PV solar panel. It was decided not to select a Buck or Boost DC-DC converter based power system as this would limit the exibility of the system. Additionally, the SEPIC DC-DC converter brings with it the ability to isolate the input and output voltage upon shut down. This isolation is due to the SEPIC DC-DC converter's coupling capacitor and this topologies operation as described by National Semiconductor (2008) and Texas Instruments (2008a). The prototype was versatile allowing a wide variety of PV solar cell technologies to be used. The wide operating voltage of the prototype allowed the design to be connected to a series or parallel combination of solar cells with an operating voltage of 3 V to 20 V. The power handling capability of the prototype per solar panel channel allows the design to be applied to a 1 U or 3 U CubeSat given that the channel did not exceed 10 W. All components of the prototype operated without fault, e ectively charging the Li-poly battery safely while protecting payloads and subsystems. The SEPIC DC-DC converter utilised by the MPPT achieved an e ciency of 71 % under full load and with an input voltage of 10 V.
170

Multiple CubeSat Mission for Auroral Acceleration Region Studies

Castro, Marley Santiago January 2021 (has links)
The Auroral Acceleration Region (AAR) is a key region in understanding the interactionbetween the Magnetosphere and Ionosphere. To understand the physical, spatial, and temporal features of the region, multi-point measurements are required. Distributed small-satellite missions such as constellations of multiple nano satellites (for example multi-unit CubeSats) would enable such type of measurements. The capabilities of such a mission will highly depend on the number of satellites - one reason that makes low-cost platforms like CubeSats a very promising choice. In a previous study, the state-of-the-art of miniaturized payloads for AAR measurements was analyzed and evaluated on the capabilities of different multi-CubeSat configurations equipped with such payloads in addressing different open questions in AAR. This thesis will provide the mission analysis of such a multi-CubeSat mission to the AAR and possible mission design. This includes defining the mission scenario and associated requirements, developing a mathematical description of AAR that allows for specific regions in space to be targeted, an optimisation process for designing orbits targeting these regions, conversion of a satellite formation to appropriate orbits, verifying the scientific performance of this formation and the various costs associated with entering, maintaining, and exiting these orbits.

Page generated in 0.0335 seconds