• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 12
  • 12
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization And Property Studies Of Cyanate Ester/Organoclay Nanocomposites

Huang, Gang 05 August 2006 (has links)
Five series of PT-30/organoclay (Cloisite 10A, Cloisite 30B, Nanomer I.28E, Nanomer I.30E and Nanomer I.44PA) composites were prepared and characterized. The dispersion of clay tactoids in PT-30 resin was studied by XRD and TEM. XRD analyses determined that the d-spacings of each nanoclays of these were expanded upon dispersing in the PT-30 matrix versus the as-received clay. TEM micrographs further demonstrated that the intercalation of clay layers by PT-30 occurred during the curing process. Histograms of clay tactoids distributions were generated based on the combination of XRD and TEM results. The glass transition temperatures (Tg) of selected PT-30/clay composites were measured by DSC and compared. Partial clay exfoliation with some resin intercalation was demonstrated. The average flexural strengths and flexural moduli of all composites were obtained using three-point bending tests.
2

Multifunctional cyanate ester/MWNT nanocomposites : processing and characterization

Lao, Si Chon 02 March 2015 (has links)
Tomorrow’s lightweight, high-performance composite systems will be made of structures built with materials that have unprecedented intrinsic properties for performing a wide range of functions, such as EMI shielding, thermal management, flame resistance, lightning strike protection, acoustic damping, and health-monitoring. Current structures require parasitic components, e.g., metal strips, copper wire meshes, strain gauges, and heat sinks to provide these functions. By eliminating parasitic components, future high-performance multifunctional systems can achieve the intended objectives, while maintaining optimum weight, reliability, cost, and fuel efficiency. With the continuing growth of polymer composites in industries, such as aerospace, automotive, and wind energy, research and development on lightweight, high-performance composites that possess extraordinary properties for future multifunctional systems has generated considerable interest and excitement. Recent advances in nanomaterial synthesis and functionalization have shown that tailored property combinations are possible with reduced parasitic content to achieve multifunctionality. Cyanate ester (CE), a class of high-performance thermosetting resins (high T [subscript g], >250°C), has received considerable attention due to its good mechanical properties, thermal stability, flammability properties, ease of process, and volatile-free curing process. Multiwall carbon nanotubes were selected due to their unique combination of excellent mechanical, electrical, and thermal properties. The principal objective of this work is to determine the extent to which several different processing techniques will affect the MWNT dispersion and corresponding nanocomposite properties, such as thermal, flammability, mechanical, and electrical properties. A processing-structure-property relationship, as well as performance of this class of carbon-based CE nanocomposite, will be established. Therefore, a major scientific contribution of this study will be the development and characterization of a novel, multifunctional CE nanocomposite. Different mixing instruments, such as high shear mixer, ultrasonicator, planetary centrifugal mixer, etc. were used to disperse the nanotubes in the cyanate ester resin matrix. Microstructural morphology characterizations by SEM, STEM, and TEM show that various degrees of dispersions of MWNTs were obtained by the different mixing techniques. An attempt to quantify the MWNT dispersion was made. Electrical resistivity of samples processed by both stand mixer and three-roll mill passes the ESD requirement; however, the MWNT percolation thresholds by the two techniques are different. Thermal analysis shows that the addition of the Fe³+ catalyst or the coupling agent lowers the glass transition temperature and degrades the mechanical properties (e.g., storage modulus, tangent of phase angle delta) of the CE resin. On the other hand, processing techniques only affect the mechanical properties of the resin. Thermal stability of CE is only slightly affected by different processing techniques, as well as the addition of MWNTs. Much more significantly, flammability characterization shows that the incorporation of either the Fe³+ catalyst or the coupling agent substantially increases the peak heat release rate (PHRR) relative to the neat CE resin value. / text
3

Cyanate Ester, Epoxy And Epoxy/Cyanate Ester Matrix Polyhedral Oligomeric Silsesquioxane Nanocomposites

Liang, Kaiwen 10 December 2005 (has links)
Cyanate ester (PT-15, Lonza Corp) composites containing the inorganic-organic hybrid polyhedral oligomeric silsesquioxanes (POSS), octaaminophenyl(T8)POSS (C6H4NH2)8(SiO1.5)8, cyanopropylheptacyclopentyl(T8)POSS, (C5H9)7(SiO1.5)8(CH2) 3CN or TriSilanolPhenylPOSS (C42H38O12Si7), were synthesized respectively. These PT-15/POSS composites were characterized by FT-IR, X-ray diffraction (XRD), small-angle neutron scattering (SANS), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (X-EDS), transmission electron microscopy (TEM), dynamic mechanical thermal analysis (DMTA) and three-point bending flexural tests. XRD, TEM and IR data are all consistent with molecular dispersion of octaaminophenyl(T8)POSS and TriSilanolPhenylPOSS due to the chemical bonding of the POSS macromer into the continuous cyanate ester network phase. In contrast to octaaminophenyl(T8) POSS and TriSilanolPhenylPOSS, cyanopropylheptacyclopentyl (T8)POSS has a low solubility in PT-15 and does not react with the resin before or during the cure. The TriSilanolPhenylPOSS (C42H38O12Si7) was incorporated into the aliphatic epoxy (Epoxy 9000, Clearstream Products, Inc.) in 99/1, 97/3, 95/5, 90/10 and 85/15 w/w ratios and cured. This same epoxy resin was also blended with an equal weight (50/50 w/w) of cyanate ester resin (PT-15, Lonza Corp) and TriSilanolPhenylPOSS was added in resin/POSS weight ratios of 99/1, 97/3, 95/5, 90/10 and 85/15 and cured. Both sets of composites were characterized by FT-IR, X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (X-EDS), dynamic mechanical thermal analysis (DMTA) and three-point bending flexural tests. TriSilanolPhenyl-POSS was first thoroughly dispersed into the uncured liquid epoxy resin or the epoxy/PT-15 blend. XRD and X-EDS measurements after curing were consistent with partial molecular dispersion of the POSS units in the continuous matrix phase, while the remainder forms POSS aggregates. TEM and SEM show that POSS?enriched nanoparticles are present in the matrix resins of both the epoxy/POSS and epoxy-PT-15/POSS composites.
4

THERMAL, MAGNETIC, AND MECHANICAL STRESSES AND STRAINS IN COPPER/CYANATE ESTER CYLINDRICAL COILS – EFFECTS OF VARIATIONS IN FIBER VOLUME FRACTION

Donahue, Chance Thomas 01 August 2010 (has links)
Several problems must be solved in the construction, design, and operation of a nuclear fusion reactor. One of the chief problems in the manufacture of high-powered copper/polymer composite magnets is the difficulty to precisely control the fiber volume fraction. In this thesis, the effect of variations in fiber volume fraction on thermal stresses in copper/cyanate ester composite cylinders is investigated. The cylinder is a composite that uses copper wires that run longitudinally in a cyanate ester resin specifically developed by Composite Technology Development, Inc. This composite cylinder design is commonly used in magnets for nuclear fusion reactors. The application of this research is for magnets that use cylindrical coil geometry such as the Mega Amp Spherical Tokamak (MAST) in the UK. However, most stellarator magnet designs use complex geometries including the National Compact Stellarator Experiment (NCSX), and the Quasi-Poloidal Stellarator (QPS). Even though the actual stresses calculated for the cylindrical geometry may not be directly applicable to these projects, the relationship between fiber volume fraction and stresses will be useful for any geometry. The effect of fiber volume fraction on stresses produced by mechanical, thermal and magnetic loads on cylindrical magnet coils is studied using micromechanics with laminate plate theory (LPT) and finite element analysis (FEA). Based on the findings of this research, variations in volume fraction do significantly affect the stress experienced by the composite cylinder. Over a range of volume fractions from 0.3 to 0.5, the LPT results demonstrate that thermally induced stresses vary approximately 30% while stresses due to pressure vary negligibly. The FEA shows that magnetic stresses vary much less at around only 5%. FEA results seem to confirm the LPT model. It was also concluded that the stress in the insulation layers due to all types of loadings is significant and must be considered when using this system in fusion applications.
5

THERMAL, MAGNETIC, AND MECHANICAL STRESSES AND STRAINS IN COPPER/CYANATE ESTER CYLINDRICAL COILS – EFFECTS OF VARIATIONS IN FIBER VOLUME FRACTION

Donahue, Chance Thomas 01 August 2010 (has links)
Several problems must be solved in the construction, design, and operation of a nuclear fusion reactor. One of the chief problems in the manufacture of high-powered copper/polymer composite magnets is the difficulty to precisely control the fiber volume fraction. In this thesis, the effect of variations in fiber volume fraction on thermal stresses in copper/cyanate ester composite cylinders is investigated. The cylinder is a composite that uses copper wires that run longitudinally in a cyanate ester resin specifically developed by Composite Technology Development, Inc. This composite cylinder design is commonly used in magnets for nuclear fusion reactors. The application of this research is for magnets that use cylindrical coil geometry such as the Mega Amp Spherical Tokamak (MAST) in the UK. However, most stellarator magnet designs use complex geometries including the National Compact Stellarator Experiment (NCSX), and the Quasi-Poloidal Stellarator (QPS). Even though the actual stresses calculated for the cylindrical geometry may not be directly applicable to these projects, the relationship between fiber volume fraction and stresses will be useful for any geometry. The effect of fiber volume fraction on stresses produced by mechanical, thermal and magnetic loads on cylindrical magnet coils is studied using micromechanics with laminate plate theory (LPT) and finite element analysis (FEA).Based on the findings of this research, variations in volume fraction do significantly affect the stress experienced by the composite cylinder. Over a range of volume fractions from 0.3 to 0.5, the LPT results demonstrate that thermally induced stresses vary approximately 30% while stresses due to pressure vary negligibly. The FEA shows that magnetic stresses vary much less at around only 5%. FEA results seem to confirm the LPT model. It was also concluded that the stress in the insulation layers due to all types of loadings is significant and must be considered when using this system in fusion applications.
6

Περιβαλλοντική γήρανση σε ακραίες θερμοοξειδωτικές ή/και υγροθερμικές συνθήκες ινώδων σύνθετων υλικών κυανοεστερικής μήτρας. Θερμομηχανικός χαρακτηρισμός και αρχική μελέτη των μηχανισμών υποβάθμισης του υλικού

Κόλλια, Ευγενία 11 October 2013 (has links)
Σκοπός της παρούσας πτυχιακής εργασίας ήταν η μελέτη της περιβαλλοντικής γήρανσης ινωδών συνθέτων υλικών με κυανεστερική μήτρα σε ακραίες θερμοοξειδωτικές ή/και υγροθερμικές συνθήκες. Επίσης, ο θερμομηχανικός χαρακτηρισμός και η αρχική μελέτη των μηχανισμών υποβάθμισης. Για το σκοπό αυτό παρασκευάστηκαν πέντε τύποι πολύστρωτων πλακών οι τρείς εκ των οποίων έφεραν ως ενίσχυση οχτώ στρώσεις προεμποτισμένου πανιού ινών γυαλιού (GFRPs) τριών διαφορετικών κυανεστερικών μητρών (PN901-G201-45{GRT},HTM143,MTM110) και πλέξης 2*2 twill. Η παρασκευή των τριών αυτών πλακών έγινε με τη μέθοδο του κενού σακούλας (Hand Lay Up Vacuum Bag).Όσον αφορά στις δυο άλλες πλάκες οι οποίες προέκυψαν μέσω της διαδικασίας χύτευσης με μεταφορά ρητίνης RTM σε γνωστό ερευνητικό ινστιτούτο της Ισπανίας (Tecnalia), δύο διαφορετικοί τύποι κυανεστέρα (DT-4000,PT-30) χρησιμοποιήθηκαν ως μήτρα για τον εμποτισμό πανιού άνθρακα (CFRPs) τύπου πλέξης 5H Satin. Από την παραπάνω διαδικασία προέκυψαν πλάκες πέντε στρώσεων. Οι πλάκες ελέγχθηκαν ποιοτικά αρχικά, με τη μέθοδο υπερήχων C-Scan όπου διαπιστώθηκε η ομοιογένεια τους και έπειτα με χρήση της μεθόδου Διαφορικής Θερμιδομετρίας Σάρωσης DSC μέσω της οποίας ελέγχθηκε και επιβεβαιώθηκε το ποσοστό πολυμερισμού τους. Στην παρούσα εργασία ορίστηκαν τρεις διαδικασίες γήρανσης:(α) τοποθέτηση των δοκιμίων σε λουτρό απιονισμένου νερού στους 200C έως το σημείο ισορροπίας (AP2),(β) τοποθέτηση των δοκιμίων σε φούρνο στους 2300C για 30 μέρες (AP3) και (γ) τοποθέτηση των δοκιμίων σε φούρνο στους 2300C για 16h και σε λουτρό απιονισμένου νερού στους 200C για 16h με διάρκεια δέκα κύκλων. Αρχικά, και προ της γήρανσης τους, τα υλικά χαρακτηρίστηκαν ως προς την διαστρωματική τους αντοχή σε διάτμηση μέσω της διεξαγωγής πειραμάτων κάμψης τριών σημείων SBS (Short Beam Strength) με βάση το στάνταρντ ASTM D2344(M) και ως προς τη θερμομηχανική τους απόκριση με χρήση της πειραματικής διάταξης Δυναμικής-Μηχανικής Ανάλυσης DMA (Dynamic Mechanical Analysis). Στη συνέχεια, ακολούθησε ο χαρακτηρισμός των δοκιμίων που υποβλήθηκαν στις παραπάνω διαδικασίες γήρανσης ως προς την διαστρωματική αντοχή τους σε διάτμηση και τις θερμομηχανικές τους ιδιότητες. Επίσης, πραγματοποιήθηκε μικροσκοπικός χαρακτηρισμός των δοκιμίων μέσω της ηλεκτρονικής μικροσκοπίας σάρωσης SEM (Scanning Electron Microscopy). Συγκρίνοντας τη συμπεριφορά, μεταξύ των δοκιμίων αναφοράς και των δοκιμίων που είχαν υποβληθεί σε κάποια από τις διαδικασίες γήρανσης, στην περίπτωση του θερμοοξειδωτικού και του συνδυασμένου περιβάλλοντος γήρανσης παρατηρήθηκε υποβάθμιση των ιδιοτήτων και μεγάλη αλλαγή/απώλεια στη μάζα των υλικών. Στην περίπτωση του υγροθερμικού περιβάλλοντος παρατηρήθηκε υψηλή απορρόφηση υγρασίας σε όλα τα δοκίμια ενώ όσον αφορά τις ιδιότητές τους άλλα τις διατήρησαν και άλλα υπέστησαν πολύ μικρές μεταβολές σε σύγκριση με τις αρχικές τους. Από την παραπάνω διαδικασία προέκυψε συζήτηση και αρχικά συμπεράσματα για τους μηχανισμούς που πιθανώς έδρασαν σε κάθε διαδικασία γήρανσης. / The aim of the current investigation was to study the environmental aging of fiber reinforced polymer composites with cyanate ester resin at extreme thermooxidative, hydrothermal and combined environmental conditions. During the ageing mechanical, thermo-mechanical as well as optical characterization was performed aiming at an initial study of the active degradation mechanisms under the defined environmental conditions. For this purpose five laminated plates were developed three of which bore a reinforcement of eight layers of glass fiber preimpregnated 2 * 2 twill woven cloth (GFRPs) with three different cyanate ester matrices (PN901-G201-45 {GRT}, HTM143, MTM110). The aforementioned three plates were manufactured by the Hand Lay Up Vacuum Bag method. Regarding the two other plates which arose by following the resin transfer molding RTM technique in a known institute of research located in Spain (Tecnalia), two different types of cyanate ester resin (DT-4000, PT-30) were used as matrices for impregnation of a 5H Satin woven carbon cloth (CFRPs). The above procedure leaded to two plates of five layers. The plates were initially tested qualitatively through the ultrasonic C-Scan method from which the homogeneity of the plates was confirmed. Moreover the curing percentage was checked by using the Differential Scanning Calorimetry DSC method. For the environmental ageing of the aforementioned plates three aging processes were specified as following: (a) control of hydrothermal degradation by immersing the samples in a bath of deionized water at 200C until the equilibrium point (AP2), (b) control of thermo-oxidative degradation by placing the samples in an oven at 2300C for 30 days (AP3), and finally (c) control of materials degradation in cycled environmental conditions that combine both thermo-oxidative and hydrothermal atmosphere by keeping the samples at 2300C for 16h that is followed by their immersion in deionized water bath at 200C for 16h with duration ten cycles. Initially, and prior to aging, the materials were characterized towards their unaged response by conducting three point bending SBS (Short Beam Strength) experiments under the standard ASTM D2344 (M) as well as thermomechanical measurements by performing Dynamic Mechanical Analysis DMA (Dynamic Mechanical Analysis) measurements. This was followed by the characterization of the samples after the aforementioned aging processes towards the interlaminar shear strength and thermo-mechanical properties. In parallel with the above microscopic characterization of samples by scanning electron microscopy SEM (Scanning Electron Microscopy) was take place, too. Comparing the behavior between reference specimens and the aged specimens subjected to environmental ageing under thermooxidative atmosphere the oxidation seemed to be the main degradation mechanism in all material systems without excluding the synergistic effect of rest of the possible active degradation mechanism (e.g. further crosslinking, chain scission etch.). As for the hydrothermal environment the analysis of the results allowed to say that the plasticization is mainly activated under the specific conditions. Finally as far as the response of the materials under the cycled and combined environmental conditions is concerned, no certain conclusion for the main degradation mechanisms could be derived as the phonomemenon is too complicated.
7

The Effect of Long-Term Thermal Cycling on the Microcracking Behavior and Dimensional Stability of Composite Materials

Brown, Timothy Lawrence Jr. 12 December 1997 (has links)
The effect of thermal-cycling-induced microcracking in fiber-reinforced polymer matrix composites is studied. Specific attention is focused on microcrack density as a function of the number of thermal cycles, and the effect of microcracking on the dimensional stability of composite materials. Changes in laminate coefficient of thermal expansion (CTE) and laminate stiffness are of primary concern. Included in the study are materials containing four different Thornel fiber types: a PAN-based T50 fiber and three pitch-based fibers, P55, P75, and P120. The fiber stiffnesses range from 55 Msi to 120 Msi. The fiber CTE's range from -0.50x10⁻⁶/°F to -0.80x10⁻⁶/°F. Also included are three matrix types: Fiberite's 934 epoxy, Amoco's ERL1962 toughened epoxy, and YLA's RS3 cyanate ester. The lamination sequences of the materials considered include a cross-ply configuration, [0/90]2s, and two quasi-isotropic configurations, [0/+45/-45/90]s and [0/+45/90/-45]s. The layer thickness of the materials range from a nominal 0.001 in. to 0.005 in. In addition to the variety of materials considered, three different thermal cycling temperature ranges are considered. These temperature ranges are ±250°F, ±150°F, and ±50°F. The combination of these material and geometric parameters and temperature ranges, combined with thermal cycling to thousands of cycles, makes this one of the most comprehensive studies of thermal-cycling-induced microcracking to date. Experimental comparisons are presented by examining the effect of layer thickness, fiber type, matrix type, and thermal cycling temperature range on microcracking and its influence on the laminates. Results regarding layer thickness effects indicate that thin-layer laminates microcrack more severely than identical laminates with thick layers. For some specimens in this study, the number of microcracks in thin-layer specimens exceeds that in thick-layer specimens by more than a factor of two. Despite the higher number of microcracks in the thin-layer specimens, small changes in CTE after thousands of cycles indicate that the thin-layer specimens are relatively unaffected by the presence of these cracks compared to the thick-layer specimens. Results regarding fiber type indicate that the number of microcracks and the change in CTE after thousands of cycles in the specimens containing PAN-based fibers are less than in the specimens containing comparable stiffness pitch-based fibers. Results for specimens containing the different pitch-based fibers indicate that after thousands of cycles, the number of microcracks in the specimens does not depend on the modulus or CTE of the fiber. The change in laminate CTE does, however, depend highly on the stiffness and CTE of the fiber. Fibers with higher stiffness and more negative CTE exhibit the lowest change in laminate CTE as a result of thermal cycling. The overall CTE of these specimens is, however, more negative as a result of the more negative CTE of the fiber. Results regarding matrix type based on the ±250°F temperature range indicate that the RS3 cyanate ester resin system exhibits the greatest resistance to microcracking and the least change in CTE, particularly for cycles numbering 3000 and less. Extrapolations to higher numbers of cycles indicate, however, that the margin of increased performance is expected to decrease with additional thermal cycling. Results regarding thermal cycling temperature range depend on the matrix type considered and the layer thickness of the specimens. For the ERL1962 resin system, microcrack saturation is expected to occur in all specimens, regardless of the temperature range to which the specimens are exposed. By contrast, the RS3 resin system demonstrates a threshold effect such that cycled to less severe temperature ranges, microcracking does not occur. For the RS3 specimens with 0.005 in. layer thickness, no microcracking or changes in CTE are observed in specimens cycled between between ±150°F or ±50°F. For the RS3 specimens with 0.002 in. layer thickness, no microcracking or changes in CTE are observed in specimens cycled between ±50°F.. Results regarding laminate stiffness indicate negligible change in laminate stiffness due to thermal cycling for the materials and geometries considered in this investigation. The study includes X-ray examination of the specimens, showing that cracks observed at the edge of the specimens penetrate the entire width of the specimen. Glass transition temperatures of the specimens are measured, showing that resin chemistry is not altered as a result of thermal cycling. Results are also presented based on a one-dimensional shear lag analysis developed in the literature. The analysis requires material property information that is difficult to obtain experimentally. Using limited data from the present investigation, material properties associated with the analysis are modified to obtain reasonable agreement with measured microcrack densities. Based on these derived material properties, the analysis generally overpredicts the change in laminate CTE. Predicted changes in laminate stiffness show reasonable correlation with experimentally measured values. / Ph. D.
8

Synthèse, structure et propriétés de polycyanurates réticulés et de matériaux nanoporeux générés en utilisant des liquides ioniques / Synthesis, structure and properties of crosslinked polycyanurates and nanoporous materials generated by using ionic liquids

Vashchuk, Alina 16 January 2019 (has links)
Cette thèse de doctorat aborde de nouvelles conceptions de films à base de résines d’ester de cyanate (CER) en présence de liquides ioniques (LIs) en tant qu'agents multifonctionnels : catalyseurs, agents de modification réactifs, renforts ou agents porogènes. Les liquides ioniques de structures et de concentrations variables accélèrent de manière significative la polycyclotrimérisation du dicyanate d’ester de bisphenol E, en l'absence de tout solvant organique supplémentaire ou additif. Les réseaux de polycyanurates resultants dopés avec des liquides ioniques aprotiques peuvent constituer des matériaux prometteurs pour la production de structures photosensibles. De tels systèmes nanocomposites permettent la séparation, larécupération et le recyclage aisés des LIs par simple extraction, ce qui permet finalement l'obtention de films nanoporeux thermostables. Les caractéristiques de la porosité de ces matériaux dépendent de la concentration des LIs dans les précurseurs CERs. Les LIs protoniques contenant des groupements fonctionnels >NH et -OH, indépendamment de leurmasse molaire, de la structure chimique du cation et de l'anion, sont incorporés chimiquement dans le réseau polycyanurate. Ainsi, les matériaux hybrides obtenus avec des fragments de liquides ioniques pourraient fournir d’excellents candidats pour des recherches futures sur les ionomères et les nanocomposites. / This PhD thesis addresses new designs of cyanate ester resin (CER) films in the presence of ionic liquids as multifunctional agents: catalysts, reactive modifiers, fillers or porogens. It should be emphasized that ionic liquids (ILs) of varying structures and concentrations significantly accelerate the polycyclotrimerization of dicyanate ester of bisphenol E, in the absence of any additional organic solvent or additive. The resulting polycyanurate networks doped with aprotic ionic liquids can be promising materials for producing photosensitive structures. Such nanocomposite systems allow for easier separation, recovery, and recycling of ILs by mere extraction, which eventually affords thermally stable nanoporous films. The porosity features of these materials depend on the concentration of ILs in the CER precursors.Protic ILs containing functional >NH and -OH groups, regardless of molar mass, chemical structure of cation and anion, chemically incorporate into the polycyanurate network, thus the resulting hybrid materials with fragments of ionic liquids could provide excellent candidates for future research in ionomers and nanocomposites.
9

Etude et modélisation des propriétés de systèmes réactifs thermodurcissables en cours de réticulation pour la simulation du procédé RTM

LEROY, Eric 27 November 2000 (has links) (PDF)
L'objectif de la thèse est de développer des méthodologies d'étude et de caractérisation permettant de modéliser l'évolution du comportement de polymères thermodurcissables lors de leur mise en œuvre par le procédé de Moulage par Transfert de Résine (RTM).<br />La première partie donne une description globale de ce procédé et du savoir-faire actuel en matière de modélisation. Elle met en évidence la nécessité d'une modélisation précise des comportements cinétique et chimiorhéologique du polymère thermodurcissable utilisé.<br />Les travaux réalisés dans ces deux domaines sont ensuite présentés et illustrés par la caractérisation d'un système composite modèle dicyanate-ester / fibres de verre.<br />La deuxième partie concerne la modélisation des cinétiques de réticulation et a pour finalité de développer les méthodes de caractérisation par calorimétrie, ces dernières apparaissant comme une étape charnière entre les connaissances en chimie des thermodurcissables et la modélisation du procédé RTM.<br />Enfin, la dernière partie regroupe les travaux réalisés dans les domaines de la rhéologie et des écoulements. Ceux-ci concernent à la fois la caractérisation de la perméabilité des renforts, l'étude de la chimiorhéologie et le suivi in situ des propriétés rhéologiques au cours du procédé par spectrométrie diélectrique.
10

Studies on the Effects of Carbon Nanotubes on Mechanical Properties of Bisphenol E Cyanate Ester/Epoxy Based Resin Systems and CFRP Composites

Subba Rao, P January 2016 (has links) (PDF)
The search and research for high performance materials for aerospace applications is a continuous evolving process. Among several fibre reinforced polymers, carbon fibre reinforced polymer (CFRP) is well known for its high specific stiffness and strength. Though high modulus and high strength carbon fibre with structural resin systems have currently been established reasonably well and are catering to a wide variety of aerospace structural applications, these properties are generally directional with very high properties along the fibre direction dominated by fibres and low in other directions depending mainly on the resin properties. Thus, there is a need to enhance the mechanical properties of the resin systems for better load transfer and to improve the resin dominated properties like shear strength and properties in directions other than along the fibre. Use of carbon nanotubes (CNTs) with their extraordinary specific stiffness and strength apparently has great potential as an additional reinforcement in resin for development of CNT-CFRP nanocomposites. However, there are several issues that need to be addressed such as compatibility of a particular resin with CNTs, amount of CNTs that can be added, uniform dispersion of these nanotubes, surface treatment and curing process etc., for optimal enhancement of the required properties. Epoxy and cyanate ester resin systems are finding applications in aerospace structures owing to their desirable set of properties. Of these, bisphenol E cyanate ester (BECy) resin of low viscosity with its low moisture absorption, better dimensional stability, and superior mechanical properties can establish itself as potential structural resin system for these applications. BECy in particular has the advantage of being more suitable for out of autoclave manufacturing process such as Vacuum Assisted Resin Transfer Molding (VARTM). Literature shows that, significant work has been carried out by various researchers reporting improvements using CNTs in epoxy resins along with various associated problems. However, studies on effects of addition of CNTs /fCNTs to BECy-CFRP composite system are not well reported. Thus, objective of this work is to study the effects of adding pristine and functionalized CNTs to low viscosity cyanate ester as well as epoxy resin systems. Further, to study the effects on mechanical properties of nanocomposites with carbon fibre reinforcement in these CNT dispersed resin system through a combination of experimental and computational approaches. Multiwall carbon nanotubes (CNTs) without and with different chemical functionalization are chosen to be added to epoxy and BECy resins. The quantity of these CNTs /fCNTs is varied in steps up to 1% by weight. Different methods of mixing such as shear mixing, ultrasonication and combined mixing cycles are implemented to achieve uniform dispersion of these nanotubes in the resin system. Standard test samples are prepared from these mixtures of nanotubes in resin systems to study the variation in mechanical properties. Further, these nanotubes added resin systems are used in fabricating CFRP laminates by VARTM process. Both uni-directional and bi-directional laminates are made with the above modified resin systems with CNTs/fCNTs. Series of experimental investigations are carried out to study various aspects involved in making of nanocomposites and the effects of the same on different mechanical properties of the nanocomposites. Standard specimens are cut out from these laminates to evaluate them for tension, compression, flexure, shear and interlaminar shear strength. The main parameters investigated are the effects of varied quantity of CNTs and functionalized CNTs in the resin mix and in CFRP nanocomposites, effect of different mixing / curing cycles etc. on the mechanical properties of the nanocomposites. The investigations have yielded very interesting and encouraging results to arrive at optimum quantity of CNTs to be added and also the effects of functionalization to achieve enhanced mechanical properties. In addition, correlation of mechanical property enhancements with failure mechanisms, dispersion behaviour and participation of CNTs / fCNTs in load transfer are explained with the aid of scanning electron microscope images. Computational studies are carried out through atomistic models using computational tools to estimate the mechanical properties, understand and validate the effects of various parameters studied through series of experimental investigations. An atomistic model is built taking into consideration the nanoscale effects of the single wall carbon nanotubes (SWCNTs) and its reinforcement in the BECy resin. Using these atomistic models, mechanical properties of individual SWCNT, BECy polymer resin, polymer with different quantities of added SWCNT, and the CFRP laminates with improved resin are computed. As the interaction of CNT with the polymer is only at the outermost layer and the mechanical properties of either MWCNTs or SWCNTs are too high compared to resin systems, it is not expected to have any difference in the final outcome whether it is MWCNT or SWCNT. Hence, only SWCNTs are considered in computational studies as it helps in reducing the complexity of atomistic models and computational time when coupled with polymer resin. This is valid even for functionalized CNT as functionalization is also a surface phenomenon. To start with, the mechanical behaviour of SWCNT is studied using molecular mechanics approach. Molecular mechanics based finite element analysis is adopted to evaluate the mechanical properties of armchair, zigzag and chiral SWCNT of different diameters. Three different types of atomic bonds, i.e., carbon-carbon covalent bond and two types of carbon-carbon van der Waals bonds are considered in the carbon nanotube system. The stiffness values of these bonds are calculated using the molecular potentials, namely Morse potential function and Lennard-Jones interaction potential function respectively and these stiffness values are assigned to spring elements in the finite element model of the SWCNT. The importance of inclusion of Lennard-Jones interactions is highlighted in this study. Effect of these non-bonded interactions is studied by making the numerical stiffness of these bonds to negligible levels and found that they significantly reduce the mechanical properties. The effect of non-bonded Lennard-Jones atomic interactions (van der Waal interactions) considered here is a novelty in this work which has not been considered in previous research works. The finite element model of the SWCNT is constructed, appropriate boundary conditions are applied and the behaviour of mechanical properties of SWCNT is studied. It is found that the longitudinal tensile strength and maximum tensile strain of armchair SWCNTs is greater than that of zigzag and chiral SWCNTs and its value increases with increasing SWCNT diameter. The estimated values of the mechanical properties obtained agree well with the published literature data determined using other techniques. As the systems become more complicated with the inclusion of polymers, molecular dynamics (MD) method using well established codes is more adoptable to study the effect of SWCNTs on BECy. Hence, it is used to model and solve the nanosystems to generate their stress-strain behavior. Further, MD approach followed here can effectively include interfacial interaction between polymer and the CNTs as well. Mechanical properties of SWCNT functionalized SWCNT (fSWCNT), pure BECy resin and that of the CNT nanocomposite consisting of specific quantity of SWCNT / fSWCNT in BECy are estimated using MD method. Atomistic models of SWCNT, fSWCNT, BECy, BECy with specific quantities of CNT / fSWCNT are constructed. A monomer of BECy is modelled and stabilized before its usage as a building block for modelling of BECy resin and to compute its properties. A cell of specific size containing monomers of BECy and another cell of same size with SWCNT at centre surrounded by BECy monomer molecules are built. The appropriate quantity of SWCNT in resin is modelled. This model captures the required density of the composite resin. The models so constructed are subjected to geometric optimization satisfying the convergence criteria and equilibrated through molecular dynamics to obtain a stable structure. The minimized structure is subjected to small strain in different directions to calculate the Young’s modulus and other moduli of the CNT-BECy resin composite. The process is repeated for different quantities of SWCNT in BECy resin to obtain their moduli. Further, tensile and shear strengths of CNT-BECy are obtained by subjecting the equilibrated structure to a series of applied strains from 0 to 10% in steps of 1%. The stress values corresponding to each strain are obtained and a stress – strain curve is plotted. From the stress- strain curve, the strengths of the CNT -BECy which is the stress corresponding to the modulus after which the material starts to soften are determined. Effects of functionalization on mechanical properties of SWCNT are observed. Further, effects of functionalization of SWCNT are studied with a specific quantity of fSWCNT on different moduli and strengths of BECy are investigated. The properties of enhanced CNT–BECy nanocomposite resin with different quantities of added CNT obtained through MD are used to estimate the mechanical properties of the CNT-BECy-CFRP nanocomposite using micromechanics model. Further, validation with experimental results is attempted comparing the trends in enhancement of properties of the CNT-BECy resin and CNT-BECy-CFRP nanocomposite system. The outcome of this research work has been significantly positive in terms of i) Development of an appropriate process establishing different parameters for dispersing CNTs in the resin system, mixing, curing cycle for making of nanocomposites demonstrating significant and consistent enhancement of mechanical properties of BECy based resin system and CFRP nanocomposites using optimum quantity of CNTs /fCNTs through a series of well planned and executed experimental investigations. Evaluation of mechanical properties for each of the cases has been carried out experimentally. ii) Establishing a computational methodology involving intricate atomistic modelling and molecular dynamics of nanosystems for estimation of mechanical properties of BECy polymer resin and to study the effects by addition of SWCNT / functionalized SWCNT on the properties. Results obtained through series of experimental investigations have been validated through this computational study. This could be an important step towards realising the potential of this resin system for high performance aerospace applications. Thus, in brief, detailed experimental work combined with computational studies performed as presented in this thesis resulted in achieving structurally efficient cyanate ester based nanocomposites which is unique and not reported in open literature.

Page generated in 0.1107 seconds