Spelling suggestions: "subject:"cycle cellulaire"" "subject:"eycle cellulaire""
131 |
L'imagerie systématique de transcrits et de polysomes uniques révèle un mécanisme de transport dépendant de la protéine naissante / Systematic imaging of single transcripts and polysomes reveals a widespread transport mechanism dependent on nascent translationSafieddine, Adham 12 November 2019 (has links)
La traduction locale permet un contrôle spatial de l'expression des gènes. Dans ce travail, j'ai participé à deux cribles de localisation d'ARNm concernant plus de 1000 transcrits. Le premier était un crible double ARNm/protéine qui utilisait une approche de BAComics pour co-détecter les ARNm et la protéine pour laquelle ils codent. Le second a été réalisé à l'aide d'une nouvelle approche smFISH à haut-débit et a analysé tous les ARNm codant pour des protéines centrosomales et des régulateurs mitotiques. Le premier crible a révélé des cas de traduction locale dans divers compartiments subcellulaires, et notamment au niveau des protrusions cytoplasmiques, des centrosomes, de l’appareil de Golgi, des endosomes et des pores nucléaires, ce qui n'avait jamais été décrit auparavant. De manière remarquable, la traduction du peptide naissant était nécessaire pour le transport de nombreux transcrits localisés. De plus, j'ai montré que plusieurs ARNm (tels que ASPM et DYNC1H1) sont traduits dans des structures dédiées appelées usines de traduction.Le deuxième crible a révélé 8 transcrits localisés et traduits au niveau des centrosomes. J'ai montré que la localisation de ces 8 transcrits est régulée par le cycle cellulaire et qu'elle nécessite également la traduction du polypeptide naissant. En utilisant le gène ASPM comme modèle, j'ai visualisé des ARNm et des polysomes uniques avec les systèmes MS2 et SunTag, respectivement. Cela a révélé un transport dirigé des polysomes ASPM vers les centrosomes au début de la mitose, lorsque cet ARNm commence à être localisé. Ces données fournissent des preuves fortes d'un mécanisme de ciblage co-traductionnel dépendant de moteurs moléculaires ainsi que de la protéine naissante. Cela va à l'encontre du dogme actuel selon lequel le transport d'ARNm est un processus basé sur l'ARN et agissant sur des molécules réprimées pour la traduction. En revanche, cela suggère que des mécanismes tels que celui utilisé par le SRP sont plus répandus qu'on ne le pensait auparavant. / Local translation allows a spatial control of gene expression. Here, I participated in two mRNA localization screens imaging more than 1000 transcripts in total: (i) the first was a dual mRNA/protein screen that used a BAComics approach to co-detect mRNAs and the protein they encode; (ii) the second was done using a new high-throughput smFISH approach to screen all genes that encode centrosomal proteins and mitotic regulators. The first screen revealed cases of local translation at various subcellular compartments including cytoplasmic protrusions, centrosomes, Golgi, endosomes and the nuclear pore, which was never described before. Remarkably, translation of the nascent peptide was required for the transport of many localized transcripts. In addition, I showed that several mRNAs (such as ASPM and DYNC1H1) are translated in dedicated structures called translation factories.The second screen revealed 8 transcripts that are localized and translated at the centrosome. I showed that the localization of these 8 transcripts is regulated by the cell cycle, and that it also requires translation of the nascent polypeptide. Using the endogenous ASPM gene as a model, I imaged single mRNAs and polysomes with the MS2 and SunTag systems, respectively. This revealed a directed transport of ASPM polysomes towards centrosomes at the onset of mitosis, when this mRNA starts localizing. These data provide definitive evidence for a co-translational targeting mechanism dependent on motors as well as the nascent protein. This argues against the current dogma that mRNA transport is an RNA-based process acting on translationally repressed molecules. Instead, it suggests that SRP-like mechanisms are more widespread than previously thought.
|
132 |
Régulation du cycle cellulaire par le récepteur natriurétique de type C dans les cellules du muscle lisse vasculaire : mécanismes moléculairesEl Andalousi, Jasmine 05 1900 (has links)
No description available.
|
133 |
Caractérisation des effets antiprolifératifs et pro-inflammatoires associés à une déplétion du coactivateur transcriptionnel PGC-1beta dans le mélanomeLaurin, Karl 05 1900 (has links)
Le mélanome est le cancer de la peau le plus mortel. Il est caractérisé par une grande hétérogénéité et une reprogrammation métabolique importante qui lui confère l’habileté de promouvoir des programmes immunosuppressifs et de développer une résistance aux traitements. Cette capacité permet au mélanome d’agir sur le microenvironnement tumoral et d’échapper à l’immunosurveillance du système immunitaire. La famille des peroxisome-proliferator activated receptor gamma coactivator 1 (PGC-1s) est un joueur clé du métabolisme cellulaire en régulant la biogenèse mitochondriale, la phosphorylation oxydative et la détoxification du stress oxydatif. Des études ont montré que l’expression de PGC-1α module la fonction mitochondriale. Les fonctions de PGC-1β et PRC, les 2 autres membres de cette famille, dans le mélanome restent largement inexplorées. Ce mémoire montre pour la première fois que l’expression des PGC-1s est non seulement associée à l’expression de plusieurs molécules pro-inflammatoires (IL-8, TNF, IL-1), mais aussi à l’expression de molécules immunosuppressives (CD73, PD-L2, Galectin-9) pouvant contrôler la réponse immunitaire. Par l’utilisation d’inhibiteurs ciblant des voies de signalisation de l’immunité innée, nous avons montré que la régulation de ces molécules s’effectue via MEK et IKK dans les cellules déplétées en PGC-1β. La déplétion en PGC-1 altère la fonction mitochondriale, induisant l’expression de p21 et l’arrêt du cycle cellulaire d’une manière soutenue et via un mécanisme indépendant des dérivés réactifs de l’oxygène (ROS). Nos travaux montrent que les PGC-1s possèdent d’importantes fonctions immunitaires dans le mélanome qui peuvent potentiellement dicter la croissance tumorale, l’évasion cellulaire et la réponse aux thérapies anticancéreuses. / Melanoma is the deadliest form of skin cancer. It is defined by great heterogeneity and extensive metabolic reprogramming which gives it the ability to promote immunosuppressive programs and develop therapy resistance. This ability allows melanoma to define the tumor microenvironment and escape the immunosurveillance of the immune system. The peroxisome-proliferator activated receptor gamma coactivator 1 (PGC-1s) family is a key player in cell metabolism by regulating mitochondrial biogenesis, oxidative phosphorylation and oxidative stress detoxification. Studies have shown that the expression of PGC-1α is linked to increased mitochondrial function and the metastatic potential of melanoma. The functions of PGC-1β and PRC, the other 2 members of this family, in melanoma remain largely unexplored. This thesis shows for the first time that the expression of PGC-1s is not only associated with the expression of several pro-inflammatory molecules (IL-8, TNF, IL-1) but also with the expression of immunosuppressive molecules (CD73, PD-L2, Galectin-9) which can control the immune response. Using inhibitors targeting innate immunity signaling pathways, we have shown that the regulation of these molecules occurs via MEK and IKK in PGC-1β depleted melanoma cells. Depletion of PGC-1 impairs mitochondrial function and leads to p21 induction and cell cycle arrest in a sustained manner by a reactive oxygen species (ROS)-independent mechanism. Our work shows that PGC-1s have important immune functions in melanoma that can potentially dictate tumor growth, cell evasion and response to cancer therapies.
|
134 |
Identification et caractérisation de nouveaux médiateurs de l'activité biologique de la protéine suppresseur de tumeur p53Doumont, Gilles CA 13 September 2005 (has links)
Le suppresseur de tumeur p53 permet à la cellule de se défendre contre différentes formes de stress. Il joue un rôle de barrière s'opposant à la tumorigenèse: en effet la perte de p53 chez la souris prédispose grandement ces animaux à développer des tumeurs; de même le locus p53 est inactivé dans près de 50% des tumeurs humaines.
p53 constitue un facteur de transcription qui se lie à des séquences particulières de l'ADN et active l'expression des gènes adjacents. L'expression orchestrée de ces gènes conduit, directement ou indirectement et suivant le contexte cellulaire, soit à la mort de la cellule soit à l'inhibition de la division cellulaire.
Les mécanismes moléculaires médiant ces deux activités biologiques essentielles de p53, de même que les mécanismes influençant le choix de la réponse cellulaire, sont encore mal compris. L'importance de p53 dans ce choix reste également à démontrer.
Afin de contribuer à la compréhension de ces mécanismes, le modèle murin déficient pour Mdm4, un régulateur négatif de l'activité de p53, a été choisi. L'inactivation de Mdm4 chez la souris conduit en effet à l'activation ectopique de p53 in vivo et l'induction de deux types de réponse: apoptose dans le neuroépithélium et arrêt de la prolifération cellulaire dans les tissus non neuronaux. Le profil d'expression des gènes dans les tissus neuronaux et non neuronaux a donc été comparé entre embryons de souris sauvage et mdm4-/- par la technique d'hybridation de biopuces à ADN. Les résultats obtenus suggèrent que le type de réponse dépend du type cellulaire et non de p53 lui-même. En effet les profils d'expression des gènes dans les tissus neuronaux (conditions d'apoptose) et non neuronaux (conditions d'arrêt de la prolifération cellulaire) chez l'embryon de souris mdm4-/- sont comparables.
Nous nous sommes ensuite particulièrement intéressés à deux nouveaux gènes dont l'expression est augmentée dans les embryons mdm4-/-. Dans un premier temps, leur induction transcriptionnelle chez l'embryon de souris mdm4-/- a été confirmée par différentes techniques et il a été vérifié qu'ils constituaient tous deux des cibles directes de p53 induites suite à un stress génotoxique.
Le premier gène code Dapk1, une protéine suppresseur de tumeur pro-apoptotique présentant une activité de type sérine/thréonine kinase. Ce travail a permis d'établir que Dapk1 participait à une boucle de rétroaction du contrôle de l'activité de p53.
Le deuxième gène identifié code la protéine Ptprv, un récepteur transmembranaire présentant une activité de type tyrosine phosphatase. En vue d'étudier la signification physiologique de l'induction transcriptionnelle de ptprv suite à l'activation de p53, des expériences effectuées à partir de matériel biologique issu de souris déficientes pour Ptprv ont été réalisées. Ces expériences confirment le rôle essentiel de Ptprv comme médiateur de l'arrêt du cycle cellulaire en phase G1 induit par p53 suite à un stress génotoxique, à la fois in vitro et in vivo. Par contre, Ptprv ne semble pas influencer l'apoptose induite suite à l'activation de p53. Ce travail a également permis d'établir le rôle essentiel de Ptprv dans la suppression de tumeurs induites chez la souris par activation constitutive de l'oncogène Ras.
|
135 |
Spatiotemporal regulation of the Greatwall : PP2A axis is required for mitotic progressionWang, Peng 09 1900 (has links)
Le cycle cellulaire est hautement régulé par la phosphorylation réversible de plusieurs effecteurs. La kinase dépendante des cyclines Cdk1 déclenche la mitose en induisant le bris de l’enveloppe nucléaire, la condensation des chromosomes et la formation du fuseau mitotique. Chez les animaux métazoaires, ces évènements sont contrés par la protéine phosphatase PP2A-B55, qui déphosphoryle plusieurs substrats de Cdk1. La kinase Greatwall (Gwl) est activée par le complexe cycline B-Cdk1 en début de mitose et induit ensuite l’inhibition de PP2A-B55 via Endos/Arpp19. Toutefois, les mécanismes moléculaires qui régulent Gwl sont encore peu connus.
Nous avons montré que Gwl a une activité s’opposant à PP2A-B55, qui collabore avec la kinase Polo pour assurer l’attachement du centrosome au noyau et la progression du cycle cellulaire dans le syncytium de l’embryon de la drosophile. Ensuite, nous avons trouvé dans des cellules de drosophile que Gwl est localisée au noyau pendant l’interphase, mais qu’elle se relocalise au cytoplasme dès la prophase, avant le bris de l’enveloppe nucléaire. Nous avons montré que cette translocation de Gwl est cruciale pour sa fonction et qu’elle dépend de la phosphorylation de plusieurs résidus de la région centrale de Gwl par les kinases Polo et Cdk1. Cette région centrale contient également deux séquences de localisation nucléaire (respectivement NLS1 et NLS2). De plus, nos résultats suggèrent que la phosphorylation de Gwl par la kinase Polo promeut sa liaison avec la protéine 14-3-3ε, ce qui favorise la rétention cytoplasmique de Gwl. Le rôle de Cdk1 dans cette translocation reste quant à lui inconnu. De plus, nous avons montré que le complexe cycline B-Cdk1 entre dans le noyau avant que Gwl ne soit transportée dans le cytoplasme. Cdk1 pourrait donc activer Gwl et phosphoryler ses substrats nucléaires, à l’abri de PP2A-B55 qui est largement cytoplasmique. Gwl est ensuite exclue du noyau et relocalisée dans le cytoplasme afin d’induire l’inhibition de PP2A-B55. Cela permet de synchroniser les événements de phosphorylation se produisant dans le noyau et dans le cytoplasme. Fait intéressant, un mécanisme de régulation de la localisation de Gwl similaire à cela a été découvert chez l’humain et chez la levure, suggérant que ce mécanisme est conservé entre différentes espèces. / Reversible phosphorylation of proteins, triggered by cyclically activated kinases and phosphatases, is a key mechanism to control cell cycle progression. CyclinB-Cdk1 is a crucial kinase phosphorylating a large number of substrates to trigger mitotic entry. However, in metazoans, it is counteracted mainly by a Protein Phosphatase 2A carrying the B55 regulatory subunit (PP2A-B55). On the other hand, the Greatwall (Gwl) kinase is activated by CyclinB-Cdk1 upon mitotic entry and subsequently induces the inhibition of PP2A-B55 by Endos/Arpp19, thus promoting mitotic entry and maintenance. Nonetheless, the regulatory mechanisms of Gwl are less clear.
We demonstrated that in Drosophila syncytial embryos, PP2A-B55 is negatively regulated by Gwl, but collaborates with Polo kinase to ensure both nucleus attachment of centrosome and faithful cell cycle progression. Later, we discovered that in Drosophila, the subcellular localization of Gwl changes dramatically throughout the cell cycle. Gwl is nuclear in interphase but suddenly becomes mostly cytoplasmic in prophase before nuclear envelope breakdown. Such translocation is important for Gwl’s function and requires the phosphorylation of Gwl by both Polo kinase and Cdk1 in the region containing two Nuclear Localization Signals (NLSs). Phosphorylation of Gwl by Polo likely promotes its association with14-3-3ε thereby promoting Gwl cytoplasmic retention, whereas Cdk1’s role in this translocation remains elusive. Moreover, I found that most cyclin B is imported into the nucleus before Gwl translocates to the cytoplasm. Therefore, Cdk1 can activate Gwl and phosphorylate its nuclear substrates without the perturbation of PP2A-B55 which is largely cytoplasmic. Subsequently, Gwl translocates into cytoplasm to mediate the inhibition of PP2A-B55 so that the phosphorylation events can be synchronized between the nucleus and the cytoplasm. Interestingly, similar spatial regulation of Gwl was also uncovered in mammal cells and in yeast, implying a conserved regulatory mechanism across species.
|
136 |
Manipulation of the ubiquitin-proteasome system by HIV-1 : role of the accessory protein VprBelzile, Jean-Philippe 02 1900 (has links)
Le virus de l’immunodéficience humaine de type 1 (VIH-1), l’agent étiologique du SIDA, est un rétrovirus complexe arborant plusieurs protéines accessoires : Nef, Vif, Vpr, et Vpu. Celles-ci sont impliquées dans la modulation de la réplication virale, dans l’évasion immunitaire et dans la progression de la pathogenèse du SIDA. Dans ce contexte, il a été démontré que la protéine virale R (Vpr) induit un arrêt de cycle cellulaire en phase G2. Le mécanisme par lequel Vpr exerce cette fonction est l’activation, ATR (Ataxia telangiectasia and Rad3 related)-dépendante, du point de contrôle de dommage à l’ADN, mais les facteurs et mécanismes moléculaires directement impliqués dans cette activité demeurent inconnus. Afin d’identifier de nouveaux facteurs cellulaires interagissant avec Vpr, nous avons utilisé une purification d’affinité en tandem (TAP) pour isoler des complexes protéiques natifs contenant Vpr. Nous avons découvert que Vpr s’associait avec CRL4A(VprBP), un complexe cellulaire d’E3 ubiquitine ligase, comprenant les protéines Cullin 4A, DDB1 (DNA damage-binding protein 1) et VprBP (Vpr-binding protein). Nos études ont mis en évidence que le recrutement de la E3 ligase par Vpr était nécessaire mais non suffisant pour l’induction de l’arrêt de cycle cellulaire en G2, suggérant ainsi que des événements additionnels seraient impliqués dans ce processus. À cet égard, nous apportons des preuves directes que Vpr détourne les fonctions de CRL4A(VprBP) pour induire la polyubiquitination de type K48 et la dégradation protéosomale de protéines cellulaires encore inconnues. Ces événements d’ubiquitination induits par Vpr ont été démontrés comme étant nécessaire à l’activation d’ATR. Finalement, nous montrons que Vpr forme des foyers ancrés à la chromatine co-localisant avec VprBP ainsi qu’avec des facteurs impliqués dans la réparation de l’ADN. La formation de ces foyers représente un événement essentiel et précoce dans l’induction de l’arrêt de cycle cellulaire en G2. Enfin, nous démontrons que Vpr est capable de recruter CRL4A(VprBP) au niveau de la chromatine et nous apportons des preuves indiquant que le substrat inconnu ciblé par Vpr est une protéine associée à la chromatine. Globalement, nos résultats révèlent certains des ménanismes par lesquels Vpr induit des perturbations du cycle cellulaire. En outre, cette étude contribue à notre compréhension de la modulation du système ubiquitine-protéasome par le VIH-1 et son implication fonctionnelle dans la manipulation de l’environnement cellulaire de l’hôte. / Human immunodeficiency virus 1 (HIV-1), the etiologic agent of AIDS, is a complex retrovirus with several accessory proteins. HIV-1 accessory proteins Nef, Vif, Vpr, and Vpu have been implicated in the modulation of viral replication, enhancement of viral fitness, immune evasion, and progression of AIDS pathogenesis. In that regard, viral protein R (Vpr) induces a cell cycle arrest in the G2 phase by activating the canonical ATR (Ataxia telangiectasia and Rad3 related)-mediated DNA damage checkpoint, but cellular factors and mechanisms directly engaged in this process remain unknown. To identify novel Vpr-interacting cellular factors, we used tandem affinity purification (TAP) to isolate native Vpr-containing complexes. We found that Vpr hijacks a cellular E3 ubiquitin ligase complex, CRL4A(VprBP), composed of Cullin 4A, DDB1 (DNA damage-binding protein 1) and VprBP (Vpr-binding protein). Moreover, we observed that recruitment of the E3 ligase by Vpr was necessary but not sufficient for the induction of G2 cell cycle arrest, suggesting that additional events are involved. In this context, we provide direct evidence that Vpr usurps the function of CRL4A(VprBP) to induce the K48-linked polyubiquitination and proteasomal degradation of as-yet-unknown cellular proteins. These ubiquitination events mediated by Vpr were necessary for the activation of ATR. Moreover, we show that Vpr forms chromatin-associated foci that co-localize with VprBP and DNA repair factors. Our data indicate that formation of these foci represent a critical early event in the induction of G2 arrest. Finally, we show that Vpr is able to recruit CRL4A(VprBP) on chromatin and we provide evidence that the unknown substrate targeted by Vpr is a chromatin-associated protein.
Overall, our results reveal some of the mechanisms by which Vpr induces cell cycle perturbations. Furthermore, this study contributes to our understanding of the modulation of the ubiquitin-proteasome system by HIV-1 and its functional implication in the manipulation of the host cellular environment.
|
137 |
Bcl-xL regulation and function in cell cycle checkpoints and progressionWang, Jianfang 06 1900 (has links)
Quelques évidences suggèrent que Bcl-xL, un membre anti-apoptotique de la famille Bcl-2, possède également des fonctions au niveau du cycle cellulaire et de ses points-contrôle. Pour étudier la régulation et fonction de Bcl-xL au cours du cycle cellulaire, nous avons généré et exprimé dans des cellules humaines une série de mutants de phosphorylation incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser49Ala, Ser56Ala, Ser62Ala et Thr115Ala.
L'analyse de cette série de mutants révèle que les cellules exprimant Bcl-xL(Ser62Ala) sont moins stables au point-contrôle G2 du cycle cellulaire comparées aux cellules exprimant le type sauvage ou les autres mutants de phosphorylation incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala et Thr115Ala. Les études de cinétiques de phosphorylation et de localisation de phospho-Bcl-xL(Ser62) dans des cellules synchronisées et suite à l'activation du point-contrôle en G2 médié par l'étoposide (VP16), nous indiquent que phospho-Bcl-xL(Ser62) migre dans les corps nucléolaires durant l'arrêt en G2 dans les cellules exposées au VP16. Une série d'expériences incluant des essais kinase in vitro, l'utilisation d'inhibiteurs pharmacologiques et d'ARN interférant, nous révèlent que Polo kinase 1 (PLK1) et MAPK9/JNK2 sont les protéines kinase impliquées dans la phosphorylation de Bcl-xL(Ser62), et pour son accumulation dans les corps nucléolaires pendant le point-contrôle en G2. Nos résultats indiquent que durant le point-contrôle en G2, phospho-Bcl-xL(Ser62) se lie et se co-localise avec CDK1(CDC2), le complexe cycline-kinase qui contrôle l'entrée en mitose. Nos résultats suggèrent que dans les corps nucléolaires, phospho-Bcl-xL(Ser62) stabilise l'arrêt en G2 en séquestrant CDK1(CDC2) pour retarder l'entrée en mitose. Ces résultats soulignent également que les dommages à l'ADN influencent la composition des corps nucléolaires, structure nucléaire qui émerge maintenant comme une composante importante de la réponse aux dommages à l'ADN.
Dans une deuxième étude, nous décrivons que les cellules exprimant le mutant de phosphorylation Bcl-xL(Ser62Ala) sont également plus stables au point-contrôle de l'assemblage du fuseau de la chromatine (SAC) suite à une exposition au taxol, comparées aux cellules exprimant le type sauvage ou d'autres mutants de phosphorylation de Bcl-xL, incluant Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala. Cet effet est indépendent de la fonction anti-apoptotique de Bcl-xL. Bcl-xL(Ser62) est fortement phosphorylé par PLK1 et MAPK14/SAPKp38α à la prométaphase, la métaphase et à la frontière de l'anaphase, et déphosphorylé à la télophase et la cytokinèse. Phospho-Bcl-xL(Ser62) se trouve dans les centrosomes avec γ-tubuline, le long du fuseau mitotique avec la protéine moteure dynéine et dans le cytosol mitotique avec des composantes du SAC. Dans des cellules exposées au taxol, phospho-Bcl-xL(Ser62) se lie au complexe inhibiteur CDC20/MAD2/BUBR1/BUB3, alors que le mutant Bcl-xL(Ser62Ala) ne se lie pas à ce complexe. Ces résultats indiquent que durant le SAC, la phosphorylation de Bcl-xL(Ser62) accélère la résolution du SAC et l'entrée des cellules en anaphase. Des expériences bloquant l'expression de Bcl-xL révèlent ègalement un taux très élevé de cellules tétraploïdes et binuclées après un traitement au nocodazole, consistant avec une fonction de Bcl-xL durant la mitose et dans la stabilité génomique.
Dans la troisième étude, l'analyse fonctionnelle de cette série de mutants de phosphorylation indique également que les cellules exprimant Bcl-xL(Ser49Ala) sont moins stables durant le point-contrôle G2 et entre en cytokinèse plus lentement dans des cellules exposées aux inhibiteurs de la polymérisation/dépolymérisation des tubulines, composantes des microtubules. Ces effets de Bcl-xL(Ser49Ala) sont indépendents de sa fonction anti-apoptotique. La phosphorylation de Bcl-xL(Ser49) est dynamique au cours du cycle cellulaire. Dans des cellules synchronisées, Bcl-xL(Ser49) est phosphorylé en phase S et G2, déphosphorylé à la prométaphase, la métaphase et à la frontière de l'anaphase, et re-phosphorylé durant la télophase et la cytokinèse. Au cours du point-contrôle G2 induit par les dommages à l'ADN, un pool important de phospho-Bcl-xL(Ser49) se trouve aux centrosomes, un site important pour la régulation de l'entrée en mitose. Durant la télophase et la cytokinèse, phospho-Bcl-xL(Ser49) se trouve le long des microtubules avec la protéine moteure dynéine et dans le cytosol mitotique. Finalement, nos résultats suggèrent que PLK3 est responsable de la phosphorylation de Bcl-xL(Ser49), une protéine kinase impliquée pour l'entrée des cellules en mitose et pour la progression de la mitose jusqu'à la division cellulaire. / Accumulating evidence suggest that Bcl-xL, an anti-apoptotic member of the Bcl-2 family, also functions in cell cycle progression and cell cycle checkpoints. To further understand Bcl-xL regulation and function in cell cycle progression, we first expressed a series of single-point Bcl-xL cDNA phospho-mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser49Ala, Ser56Ala, Ser62Ala and Thr115Ala in human cancer cell lines and investigated their impact on cell cycle progression.
Analysis of this series of phosphorylation mutants reveals that cells expressing Bcl-xL(Ser62Ala) mutant are less stable at the G2 checkpoint and enter mitosis more rapidly than cells expressing wild type Bcl-xL or Bcl-xL phosphorylation mutants, including Thr41Ala, Ser43Ala, Thr47Ala, Ser56Ala and Thr115Ala. Dynamic phosphorylation and location studies on phospho-Bcl-xL(Ser62) in unperturbed, synchronized cells and during DNA damage-induced G2 arrest revealed that phospho-Bcl-xL(Ser62) translocates into nucleolar structures in VP16-exposed cells during G2 arrest. Using in vitro kinase assays, pharmacological inhibitors and specific siRNAs experiments, we found that Polo kinase 1 and MAPK9/JNK2 are major protein kinases involved in Bcl-xL(Ser62) phosphorylation and accumulation into nucleolar structures during the G2 checkpoint. In nucleoli, phospho-Bcl-xL(Ser62) binds to and co-localizes with CDK1(CDC2), the key cyclin-dependent kinase required for entry into mitosis. These data indicate that, during G2 checkpoint, phospho-Bcl-xL(Ser62) stabilizes G2 arrest by timely trapping CDK1(CDC2) in nucleolar structures to slow mitotic entry. It also highlights that DNA damage affects the dynamic composition of the nucleolus, which now emerges as a key event in the DNA damage response.
In a second study, we describe that cells expressing Bcl-xL(Ser62Ala) are also more stable at a sustained spindle-assembly checkpoint (SAC) after exposure to taxol than cells expressing wild-type Bcl-xL or other mutants, an effect that appears to be independent of its anti-apoptotic activity. Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at prometaphase, metaphase and the anaphase boundary, while it is dephosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin, along the mitotic spindle with dynein motor protein and in cytosol with SAC signaling components. In taxol-exposed cells, phospho-Bcl-xL(Ser62) binds to the CDC20/MAD2/BUBR1/BUB3 complex, while Bcl-xL(Ser62Ala) does not. The data indicate that during SAC, Bcl-xL(Ser62) phosphorylation accelerates SAC resolution and cell entry into anaphase, even in the presence of unattached or misaligned chromosomes. Silencing Bcl-xL expression also leads nocodazole-exposed cells to tetraploidy and binucleation, consistent with a Bcl-xL function in SAC and genomic stability.
In the third study, the functional analysis of a Bcl-xL phosphorylation mutant series has revealed that cells expressing Bcl-xL(Ser49Ala) mutant are less stable at G2 checkpoint after DNA damage and enter cytokinesis much more slowly after microtubule poisoning than cells expressing wild-type Bcl-xL. These effects of Bcl-xL(Ser49Ala) mutant seem to be distinct from Bcl-xL function in apoptosis. Bcl-xL(Ser49) phosphorylation is cell cycle-dependent. In synchronized cells, phospho-Bcl-xL(Ser49) appears during the S phase and G2, whereas it disappears rapidly in early mitosis during prometaphase, metaphase and early anaphase, and re-appears during telophase and cytokinesis. During DNA damage-induced G2 arrest, an important pool of phospho-Bcl-xL(Ser49) accumulates in centrosomes which act as essential decision centers for progression from G2 to mitosis. During telophase/cytokinesis, phospho-Bcl-xL(Ser49) is found along microtubules and at midbody with dynein motor protein. In a series of in vitro kinase assays, specific small interfering RNA and pharmacological inhibition experiments, polo kinase 3 (PLK3) was implicated in Bcl-xL(Ser49) phosphorylation. These data indicate that during G2 checkpoint phospho-Bcl-xL(Ser49) is another downstream target of PLK3, acting to stabilize G2 arrest. Bcl-xL phosphorylation at Ser49 also correlates with essential PLK3 activity and function, enabling cytokinesis and mitotic exit.
|
138 |
Fonctions du facteur de transcription SCL dans les cellules souches et les progéniteurs hématopoïétiquesLacombe, Julie January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
139 |
Caractérisation du facteur hématopoïétique spécifique MNDA (Myeloid Nuclear Differentiation Antigen)Pierre-Charles, Natacha January 2007 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
140 |
Identification et caractérisation des protéines responsables de l’entrée en phase M chez Lingulodinium polyedrumDaoust, Philippe 03 1900 (has links)
Les dinoflagellés sont des eucaryotes unicellulaires qui composent une grande partie du phytoplancton et qui jouent un rôle important au niveau de la photosynthèse, de la
production primaire et de la conservation des écosystèmes marins. Les dinoflagellés se
distinguent des autres eucaryotes par leur biologie et leur organisation nucléaire unique.
Lors de la mitose, leur membrane nucléaire demeure intacte et la ségrégation des
chromosomes se fait à partir de fuseaux mitotiques formés dans le cytoplasme et qui
traversent le noyau au travers de canaux spécialisés Aussi, leurs chromosomes sont
condensés en permanence et le processus utilisé pour y arriver est encore très mal compris
puisque les dinoflagellés ne possèdent aucunes histones détectables.
Lingulodinium polyedrum est un dinoflagellé photosynthétique marin utilisé comme
organisme modèle en ce qui concerne l’étude des rythmes circadiens (bioluminescence,
migration verticale, mitose et photosynthèse). La découverte et l’étude des éléments
régulateurs du cycle cellulaire peuvent nous amener à comprendre le mécanisme,
l’influence et la portée du contrôle circadien sur le cycle cellulaire. De plus, l’étude du
cycle cellulaire pourrait permettre de révéler des indices quant aux caractéristiques
singulières des dinoflagellés qui sont pour le moment énigmatiques.
Par le passé, une étude chez Lingulodinium polyedrum a permis d’identifier la
cycline impliquée dans la mitose, LpCyc1, le premier régulateur du cycle cellulaire a être
découvert chez les dinoflagellés. La présente étude s’attarde sur la caractérisation de la
LpCyc1, soit son expression, sa localisation, sa phosphorylation. Ces trois éléments
concordent de façon à synchroniser l’activité de la LpCyc1 (et ainsi la mitose) de façon
circadienne.
Cette étude présente aussi la création et le développement d’un outil majeur pour
l’étude future de Lingulodinium polyedrum, le transcriptome des ARNm à partir d’un
iv
séquençage Illumina. C’est d’ailleurs avec cet outil que nous avons découvert la CDK
responsable du contrôle de la phase M, LpCdk1. Cette CDK possède tous les domaines
d’une CDK classique, un site de liaison des substrats, un site de liaison à l’ATP, une boucle
activatrice, et une interface de liaison avec la cycline.
Le transcriptome de Lingulodinium polyedrum a aussi permis de recenser toutes les
protéines conservées normalement retrouvées dans le contrôle du cycle cellulaire, qui nous
a permis de faire une ébauche préliminaire du cycle cellulaire de L. polyedrum. Cette
analyse est une première chez Lingulodinium polyedrum et peut s’étendre pour l’étude
d’une multitude d’autres processus métaboliques. / Dinoflagellates are unicellular eukaryotes that constitute a large part of the
phytoplankton. They are major contributors to the global photosynthesis and primary
production and they possess an important role in conservation of marine ecosystems.
Dinoflagellates are distincted from other eukaryotes by their unique biology and nuclear
organization. During mitosis, their nuclear envelope stays intact and chromosome
segregation is done by a mitotic spindle that passed through the nucleus inside several
specialized cytoplasmic channels. In addition, the chromosomes are permanently
condensed and are not thought to have histones.
Lingulodinium polyedrum is a marine photosynthetic dinoflagellate widely used to
study the control mechanisms of circadian rhythms, because many aspects of its physiology
(bioluminescence, mitosis, photosynthesis and vertical migration) are circadian. The
discovery of cell cycle regulators is essential for understanding the mechanism and the
circadian control over the cell cycle.
A previously study identified the M-phase cyclin, LpCyc1, the first dinoflagellate
cell cycle regulator to be discovered. The present study presents the characterization of the
LpCyc1, with respect to expression levels and phosphorylation patterns. These elements
act together to ensure the synchronization of the LpCyc1 activity (and the mitosis) within
the day.
This study also presents the creation and the development of the transcriptome, a
major tool for the upcoming studies of Lingulodinium polyedrum. With this tool, we
identified the Lingulodinium polyedrum M-CDK, LpCdk1. The LpCdk1 has all the
domains of a classic M-CDK, a substrate binding site, an ATP binding site, an activation
loop and a cyclin binding interface.
vi
With the Lingulodinium polyedrum transcriptome, we also made a census of all the
conserved proteins normally found in the cell cycle control of yeast. The identification of
these proteins had provided a rough shape of L. polyedrum cell cycle. This kind of analysis
is the first to be made with Lingulodinium polyedrum and could be expanded to other
metabolic processes.
|
Page generated in 0.0538 seconds