• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 214
  • 84
  • 78
  • 32
  • 30
  • 17
  • 15
  • 8
  • 6
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 580
  • 124
  • 104
  • 94
  • 76
  • 68
  • 61
  • 49
  • 48
  • 48
  • 47
  • 45
  • 42
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Experimental study of wave forces and de-draggers device for vertical and horizontal cylinders

Xie, Rong-Hua 26 July 2001 (has links)
ABSTRACT The purpose of the study is to design and test the devices(de-draggers) that can be incorporated to cylinders to reduce wave forces¡C Two force gauges have been designed to measure simultaneously the x- and z-direction wave forces, especially, for a horizontal cylinder, and the x- and y-direction wave forces, for a vertical cylinder¡C A device with water-drop shape has been fabricated to streamline the flow pattern around the cylinder that can effectively reduce the wake-induced wave force¡C The study will be performed in a wave tank by varying wave conditions and the positions of the cylinder¡CWave forces on the vertical and horizontal cylinders will be measured and compared for the cylinders with and without de-draggers,¡@respectively¡C
102

Synchronous motion of two-cylinder electro-hydraulic system with unbalanced loading

Liu, Li-Chiang 08 July 2002 (has links)
Abstract Traditional synchronous motion control of a multi-cylinder system was always achieved by using hydraulic loops design and constrained linkage mechanisms. Therefore, these control methodologies always have many disadvantages, such as inaccuracy, cost expensive, and huge volume of the equipment, and so on. In this paper, the nonlinear control strategy was proposed to control the proportional directional valves of two-cylinder electro-hydraulic system in order to achieve synchronous motion under the consideration of unbalanced and uncertainty loading. Besides, in order to explore influence of different loading to the system, two-cylinder mechanism was designed to have individual loading device without any hardware constrain between two pistons. And the maximum loading capacity for one piston is 210kg. Due to the highly complicated coupling effect of internal pressure and flow rate for two cylinders, in this paper, feedforward controller with three fuzzy controllers was designated to overcome the problem of synchronous motion. In the first, the feedforward controller of each cylinder is developed to track a desire velocity trajectory. Then, the fuzzy control of each cylinder was specified to improve the individual tracking performance. Finally, the third fuzzy controller was performed to compensate the coupling effect of two-cylinder in order to progressively improve the performance of synchronous motion. According to the experimental results, the proposed control strategy for synchronous motion of two-cylinder system was verified and the maximum synchronous error of the total system was controlled to be within 10mm. Keyword: synchronous motion; proportional directional valve; fuzzy controller; feedforward controller
103

PANS method of turbulence: simulation of high and low Reynolds number flows past a circular cylinder

Lakshmipathy, Sunil 12 April 2006 (has links)
The objective of the study is to investigate the capability of PANS (Partially Averaged Navier-Stokes Simulation) model over a wide range of Reynolds numbers and flow physics. In this regard, numerical simulations of turbulent flow past a circular cylinder are performed at ReD 140,000 and ReD 3900 using the PANS model. The high Reynolds number PANS results are compared with experimental results from Cantwell and Coles, Large Eddy Simulation results from Breuer, and Detached Eddy Simulation results from Travin et al. Low Reynolds number PANS results are compared with experimental results from Ong and Wallace and Large Eddy Simulation results from Breuer. The effects of the various PANS parameters (fk, fε, σku, σεu) on the ability to capture turbulence physics at various Reynolds numbers are studied. It is confirmed, as previously predicted from theoretical considerations that: (i) for high Reynolds number flow fε = 1 and σku = σk × fk2 / fε are most appropriate; and (ii) for low Reynolds number flow fε = fk and σku = σk are most suitable. These choices for the parameters stem from the fact that there is no clear separation of scales between the energy scales and the dissipation scales at low Reynolds number unlike in the high Reynolds number where there is a clear separation of scales between the energy containing scales and the dissipation scales. Also, in both cases it is found that decreasing fk leads to improved accuracy in predicting the flow statistics.
104

An experimental study of acoustically induced rocking motion of simple asymmetric geometries

Rodgers, Gwendolyn Virginia 16 November 2011 (has links)
Otoliths are stone-like structures in the inner ear of fish that play a crucial role in fish hearing. The original object of this research was to determine if any rocking motion was present in an otolith suspended in tissue phantom when subjected to a plane acoustic wave. Measuring the motion of an actual otolith proved to be beyond the limits of project's resources, so an aluminum hemisphere suspended in water was studied instead. The hemisphere was chosen because it was the easiest shape to measure accurately, had the asymmetry necessary to investigate the relevant physics, and had been the subject of some theoretical modeling. A plane standing wave was generated in a short open ended thick-walled cylindrical-waveguide with the waveguide's axis perpendicular to the symmetry axis of the hemisphere. Measurements were taken along the hemisphere from top to bottom to determine if any rocking actually occurred. The expected vertical vibrational motion and symmetry-forbidden horizontal vibrational motion were also measured. The horizontal displacement of the hemisphere at each point was determined by using an ultrasonic vibrometer. The vertical motion was measured using alternative other sensors and methods, such as an accelerometer and Laser Doppler Vibrometer (LDV). The results from this experiment showed a small amount of rocking, but less than predicted. The vertical motion was around ten times greater in magnitude than the rocking motion at the edge, where it is largest. Additional follow-up experiments were then conducted to determine if any experimental artifacts, such as position in the tank and method of mounting, contributed to the overall result. Additional testing was then done on a series of semicircular cylinders to determine if their motion matched theoretical predictions. In this case, rocking was also present and was found to be on the order of the motion of the hemispheres. This motion was found to be smaller than published theoretical results. These results can ultimately be used to predict and understand the motion of more complex geometries, like otoliths.
105

Sur le calcul des pièces coniques de révolution travaillant à la flexion

Ma, Min-Yuan. Esclangon, Felix Kravtchenko, Julien January 2008 (has links)
Reproduction de : Thèse de docteur-ingénieur : mathématiques : Grenoble 1 : 1956. / Titre provenant de l'écran-titre. Bibliogr. p. 91.
106

Analysis of initial condensation and the effects of distillers' spent grain pellet orientation and superheated steam operating parameters on effective moisture diffusivity

Bourassa, Justin 18 August 2015 (has links)
Distillers’ spent grain (DSG) is a by-product of ethanol production and used for swine feed supplement due to its nutrient composition. Lowering the moisture content of DSG using superheated steam (SS) drying can be more energy efficient compared to hot air drying. One objective was to investigate parameters associated with SS drying on DSG including maximum condensation, condensation time, and restoration time. Increasing SS temperature from 120 to 180 °C and SS velocity from 1.0 to 1.4 m/s resulted in a 97% and 67% decrease in maximum condensation, respectively. Another objective was to determine the effect of SS temperature, velocity, and pellet orientation on effective moisture diffusivity of DSG pellets. The diffusion model was based on finite cylinder geometry accounting for volumetric shrinkage. The diffusivity coefficient was determined to be 1.56 × 10-8 m2/s. A significant effect of pellet orientation on moisture diffusivity was found during the constant drying-rate period. / October 2015
107

Development of Enhanced Cylindrical Specimen Thermal Conductivity Testing Procedure

January 2011 (has links)
abstract: The current method of measuring thermal conductivity requires flat plates. For most common civil engineering materials, creating or extracting such samples is difficult. A prototype thermal conductivity experiment had been developed at Arizona State University (ASU) to test cylindrical specimens but proved difficult for repeated testing. In this study, enhancements to both testing methods were made. Additionally, test results of cylindrical testing were correlated with the results from identical materials tested by the Guarded Hot&ndashPlate; method, which uses flat plate specimens. In validating the enhancements made to the Guarded Hot&ndashPlate; and Cylindrical Specimen methods, 23 tests were ran on five different materials. The percent difference shown for the Guarded Hot&ndashPlate; method was less than 1%. This gives strong evidence that the enhanced Guarded Hot-Plate apparatus in itself is now more accurate for measuring thermal conductivity. The correlation between the thermal conductivity values of the Guarded Hot&ndashPlate; to those of the enhanced Cylindrical Specimen method was excellent. The conventional concrete mixture, due to much higher thermal conductivity values compared to the other mixtures, yielded a P&ndashvalue; of 0.600 which provided confidence in the performance of the enhanced Cylindrical Specimen Apparatus. Several recommendations were made for the future implementation of both test methods. The work in this study fulfills the research community and industry desire for a more streamlined, cost effective, and inexpensive means to determine the thermal conductivity of various civil engineering materials. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2011
108

Modelagem do fluxo sanguíneo na aorta abdominal utilizando interação fluido-estrutura /

Feijó, Vagner. January 2007 (has links)
Orientador: Amarildo Tabone Paschoalini / Banca: Vicente Lopes Júnior / Banca: Heraldo Nelio Cambraia / Resumo: Neste trabalho considera-se a interação fluido-estrutura em um modelo numérico tridimensional do escoamento sanguíneo no interior da artéria aorta abdominal humana. O sangue é considerado um fluido incompressível e Newtoniano e é governado pelas equações de Navier- Stokes. As paredes da aorta são modeladas a partir da Lei de Hooke, considerando a condição quase-estática. Uma solução numérica é desenvolvida para calcular os campos de pressão e velocidade do fluido e o campo de deslocamento da artéria. Exemplos experimentais foram utilizados como parâmetros validadores do modelo numérico através do método dos elementos finitos. / Abstract: In this work we are considered the interaction fluid-structure in a tri-dimensional numeric model of the blood flow inside the artery human abdominal aorta. The blood is considered an incompressible fluid and Newtonian and it is governed by the equations of Navier-Stokes. The walls of the aorta are modeled starting from the Law of Hooke, considering the condition quasi - static. A numeric solution is developed to calculate the pressure fields and speed of the fluid and the field of displacement of the artery. Experimental examples were used as parameters for validates of the model numeric through the method of the finite elements. / Mestre
109

Potential Distribution of an Electrical Source-Sink Combination Along the Axis of an Infinite Cylinder

Parish, Edward R. January 1953 (has links)
In the present paper, an attempt is made to obtain the potential distribution in the case of two such charges, a source-sink combination, located on the axis of a bore hole drilled through an infinite, homogeneous medium.
110

Timescales and Characteristics of Magma Generation in Earth and Exoplanets

January 2020 (has links)
abstract: Volcanic eruptions are serious geological hazards; the aftermath of the explosive eruptions produced at high-silica volcanic systems often results in long-term threats to climate, travel, farming, and human life. To construct models for eruption forecasting, the timescales of events leading up to eruption must be accurately quantified. In the field of igneous petrology, the timing of these events (e.g. periods of magma formation, duration of recharge events) and their influence on eruptive timescales are still poorly constrained. In this dissertation, I discuss how the new tools and methods I have developed are helping to improve our understanding of these magmatic events. I have developed a method to calculate more accurate timescales for these events from the diffusive relaxation of chemical zoning in individual mineral crystals (i.e., diffusion chronometry), and I use this technique to compare the times recorded by different minerals from the same Yellowstone lava flow, the Scaup Lake rhyolite. I have also derived a new geothermometer to calculate magma temperature from the compositions of the mineral clinopyroxene and the surrounding liquid. This empirically-derived geothermometer is calibrated for the high FeOtot (Mg# = 56) and low Al2O3 (0.53–0.73 wt%) clinopyroxene found in the Scaup Lake rhyolite and other high-silica igneous systems. A determination of accurate mineral temperatures is crucial to calculate magmatic heat budgets and to use methods such as diffusion chronometry. Together, these tools allow me to paint a more accurate picture of the conditions and tempo of events inside a magma body in the millennia to months leading up to eruption. Additionally, I conducted petrological experiments to determine the composition of hypothetical exoplanet partial mantle melts, which could become these planets’ new crust, and therefore new surface. Understanding the composition of an exoplanet’s crust is the first step to understanding chemical weathering, surface-atmosphere chemical interactions, the volcanic contribution to any atmosphere present, and biological processes, as life depends on these surfaces for nutrients. The data I have produced can be used to predict differences in crust compositions of exoplanets with similar bulk compositions to those explored herein, as well as to calibrate future exoplanet petrologic models. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2020

Page generated in 0.0552 seconds