• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 216
  • 84
  • 78
  • 32
  • 30
  • 17
  • 15
  • 8
  • 6
  • 4
  • 4
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 583
  • 125
  • 104
  • 94
  • 76
  • 69
  • 61
  • 50
  • 48
  • 48
  • 48
  • 45
  • 42
  • 41
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

The Modification of Boolean Models in Random Network Analysis

Bussmann, Stephan 11 February 2022 (has links)
In this manuscript we perform a rigorous mathematical investigation of the behavior opportunistic network models exhibit when two major real-world problems are taken into account. The first problem considered is obstruction. Here we model the network using an obstructed Gilbert graph which is a classical Gilbert graph but where there exist zones where no nodes are allowed to be placed. We take a look at percolation properties of this model, that is we investigate random graph configurations for which a component of infinite size has strictly positive probability to be created. The second problem considered in this thesis is mobility. Of course mobility in and of itself is not a problem but a feature in any network that follows the store-carry-forward paradigm. However it can be problematic to properly handle in a mathematical model. In the past this has been done by modelling movement by a series of static network configurations. However, with this technique it can be difficult to get a grasp on some of the time sensitive properties of the network. In this work we introduce the time bounded cylinder model which enables an analysis over a complete timeframe. We provide normal approximations for important properties of the model, like its covered volume and the number of isolated nodes. As we are using rigorous mathematics to tackle problems which computer scientists working in the field of distributed systems are faced with, we bring the two fields closer together.
242

Boiling heat transfer of multiple impinging water jets on a hot rotary cylinder

Uriarte, Aitor January 2021 (has links)
Quenching technique is widely used in industrial applications as it enhances the mechanical properties of metals such as hardness and tensile strength. This technique consists of a heating process followed by fast cooling which results in different microstructures that enhance the metal behavior. Current competitive market in metal field requires the implementation of advanced and optimizing techniques by means of efficient and sustainable quenching techniques. Furthermore, cooling by multiple array of water jets offers wide range of cooling rate control and consequently the achievement of the desired properties. Quenching cooling rate for a rotary cylinder by multiple impinging jets is investigated in this experimental study. A rotating steel cylinder is heated up to 700°C by an induction heater and cooled down in short time by an array of water impinging jets in order to study quenching process of the test specimen by the impinging jet technique. This fast cooling has been found to be a crucial parameter that enhances the characteristics of steel thoroughly. The magnitude of its influence has been previously studied in water pools cooling techniques. Consequently, a further understanding of quenching technique is aimed in this study by the variation of different parameters: the multiple jet’s pattern (inline and staggered), jet-to-jet spacing (S/d=4 and 6), rotational speed (10-70rpm) and water subcooling temperature (55-85K) that have been studied in 10 experiments. Running of the experiments have been done with the help of different programs such as LabVIEW and NiMAX. Measurements of the temperature along the cylinder has been carried out by using some embedded thermocouples that have been connected to the DAQ.  Results from the study revealed faster cooling with rotation speed 30rpm since the contact between hot surface and impinged water jet is improved for lower speeds. However, rotation speed10rpm results experienced negative effects. In addition, jet-to-jet spacing S/d = 4 caused higher cooling rate than S/d = 6 since the impinged water from neighbor jets lead to higher interaction between water fronts and consequently a more uniform cooling. Furthermore, significant differences have been found in temperature drop between points located closer to the center of the cylinder and the ones beneath the cooling surface. Regarding the multiple array configuration of nozzles, staggered configuration revealed more uniform cooling over the surface due to the fact that placement of the jets led to a better distribution of the impinged water in the measurement line. The effect of higher subcooling temperature in agreement with previous studies results in which higher cooling rate and more drastic temperature drop. The aim of this study is to make a better understanding of the multiple water impinging jets quenching technique in order to make further research in the area of enhancing the mechanical properties of steel by understanding effect of the quenching parameters and their characteristics in order to optimize the quenching technique for different applications.
243

An Experimental Investigation of Diesel-Ignited Gasoline and Diesel-Ignited Methane Dual Fuel Concepts in a Single Cylinder Research Engine

Dwivedi, Umang 17 August 2013 (has links)
Diesel-ignited gasoline and diesel-ignited methane dual fuel combustion experiments were performed in a single-cylinder research engine (SCRE), outfitted with a common-rail diesel injection system and a stand-alone engine controller. Gasoline was injected in the intake port using a portuel injector, whereas methane was fumigated into the intake manifold. The engine was operated at a constant speed of 1500 rev/min, a constant load of 5.2 bar IMEP, and a constant gasoline/methane energy substitution of 80%. Parameters such as diesel injection timing (SOI), diesel injection pressure, and boost pressure were varied to quantify their impact on engine performance and engineout ISNOx, ISHC, ISCO, and smoke emissions. The change in combustion process from heterogeneous combustion to HCCI like combustion was also observed.
244

Injection Timing Effects of Diesel-Ignited Methane Dual Fuel Combustion in a Single Cylinder Research Engine

Guerry, Edward Scott 17 May 2014 (has links)
Diesel-ignited methane dual fuel combustion experiments were performed in a single cylinder research engine (SCRE). Methane was fumigated into the intake manifold and injection of diesel was used to initiate combustion. The engine was operated at a constant speed of 1500 rev/min, and diesel rail pressure was maintained at 500 bar. Diesel injection timing (SOI) was varied to quantify its impact on engine performance and engine-out ISNOx, ISHC, ISCO, and smoke emissions. The SOI sweeps were performed at different net indicated mean effective pressures (IMEPs) of 4.1, 6.5, 9.5, and 12.1 bar. Intake manifold pressure was maintained at 1.5 bar for the 4.1 and 6.5 bar IMEP SOI sweeps and 1.8 bar for the 9.5 and 12.1 bar IMEP SOI sweeps. Advancing SOI to 310º and earlier resulted in reduced ISNOx. However, high methane percent energy substitution (PES) resulted in high ISHC emissions especially at low IMEP.
245

Tectonic setting and heat source of an ultrahigh-temperature metamorphic terrane constrained from prograde pressure-temperature-time-melting evolution: an example from Rundvågshetta, Lützow-Holm Complex, East Antarctica / 昇温期変成温度-圧力-時間-溶融履歴の構築による超高温変成岩体の形成テクトニクスおよび熱源の制約:東南極リュツォ・ホルム岩体ルンドボークスヘッタにおける例

Suzuki, Kouta 23 March 2023 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第24430号 / 理博第4929号 / 新制||理||1704(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)准教授 河上 哲生, 教授 下林 典正, 教授 田上 高広 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
246

Optimal geometric configuration of a cross bore in high pressure vessels.

Nziu, P. K. 04 1900 (has links)
D. Tech. (Department of Mechanical Engineering, Faculty of Engineering and Technology), Vaal University of Technology. / The purpose of this study was to develop analytical and numerical solutions to be used in the design of thick walled high pressure vessels for optimal location of a cross bore. In addition, the effects of internally applied combined thermo-mechanical loading on Stress Concentration Factor (SCF) on these vessels, was also evaluated. An analytical solution, to predict principal stresses on radial circular cross bore, was developed. The developed analytical solution was verified using finite element analysis methods. An optimisation process, using finite element analysis, was further done to determine the optimal combination of the major cross bore geometry that affect stress concentration. The cross bore geometries that were studied included the size, shape, location, obliquity and thickness ratio. The geometrically optimised cross bore was then subjected to combined thermo-mechanical loading to determine the resulting stress concentration effects. A total of 169 finite element part models were created and analysed. Seven thick walled cylinders having either circular or elliptical shaped cross bore positioned at radial, offset or and inclined were investigated. The analytical solution developed correctly predicted all the radial stresses at the intersection of the cross bore and main bore. However, out of 35 studied models, this analytical solution predicted the magnitude of hoop stresses in 9 models and that of axial stresses in 15 models correctly. The lowest SCF given by the radial circular cross bore was 2.84. Whereas, the SCF due to offsetting of the same cross bore size reduced to 2.31. Radial elliptical shaped cross bore gave the overall lowest SCF at 1.73. In contrast, offsetting of the same elliptical shaped cross bore resulted in tremendous increase in SCF magnitude exceeding 1.971. Additionally, the magnitudes of SCF were observed to increase whenever the circular offset cross bores were inclined along the RZ axis of the cylinder. The hoop stress due to internally applied combined thermo-mechanical loading increased gradually with increase in temperature until it reached a maximum value after which it began to fall sharply. In contrast, the corresponding SCF reduced gradually with increase in temperature until it reached a uniform steady state. After which, any further increase in temperature had insignificant change in stress concentration factor. The optimal SCF magnitude due to combined thermo-mechanical loading was 1.43. This SCF magnitude was slightly lower than that due to the pressure load acting alone.
247

Experimental Study of Metallic Surfaces Exposed to Cavitation

Freitas De Abreu, Marcio January 2018 (has links)
Cylinder liners in heavy-duty truck engines are subjected to intense vibrations and may sustain damage from the cavitation of bubbles in the coolant liquid, with some risks of leakage and engine breakdown. An ultrasonic oscillating probe was used to simulate the pitting rates and behavior of samples extracted from cylinder liners, which are made of grey cast iron, with differences in surface roughness, glycol and inhibitor content in coolant, coolant temperature and graphite flake class; bainitic microstructures were also tested. Measurements consisted of mass losses under set intervals during experiments lasting 2.5 or 4 hours. Affected surfaces were later evaluated with scanning electron microscopy and confocal microscopy. Results indicate higher cavitation damage with: lower concentrations of glycol and absence of corrosion/cavitation inhibitors in the coolant liquid, lower liquid temperatures between 76⁰C and 90⁰C, and presence of B-type graphite class in the microstructure. Results regarding surface roughness were inconclusive. A sequence of surface damage mechanisms has been proposed, with corresponding microscope observations, to explain the mass loss trends and the associated microstructural changes over time.
248

Simulation, Modeling, and Characterization of the Wakes of Fixed and Moving Cylinders

Marzouk, Osama A. 03 March 2009 (has links)
The first goal of this work was to develop models based on nonlinear ordinary-differential equations or nonlinear algebraic equations, which produce the lift and drag coefficients on a cylinder or a cylinder-like structure. We introduced an improved wake oscillator for the lift, which combines the van der Pol and Duffing equations. We proposed a two-term quadratic model that relates the drag and lift coefficients, which reproduces the phase relationship between the drag and lift and its variation with the Reynolds number. We found that a mixed-type (external and parametric) forcing is needed to represent the effects of the cylinder motion. The second goal of this work was to develop a deeper understanding of the shedding and fluid forces on a cylinder and how they depend on its oscillatory motion within and outside the synchronization (or lock-in) band of frequencies. We performed extensive CFD (computational fluid dynamics) simulations and solved the unsteady Reynolds-averaged Navier-Stokes equations that govern the flow fields around fixed and moving (in either the cross-flow or in-line direction) cylinders. We identified various wake modes that can exist, depending on the cylinder motion (direction, amplitude, and frequency) by using modern methods of nonlinear dynamics. The possible responses can be period-one, periodic with large period, quasiperiodic, or chaotic. Moreover, we found that the route to chaos is torus breakdown. We investigated how four frequency sweeps of the cross-flow motion affect the response curves and the hysteresis phenomenon. We studied in detail the effect of the in-line motion on the wake and related this effect to the reduction in the lift and mean drag due to a synchronization type that is very different from the one due to cross-flow motion. / Ph. D.
249

A comparative study between sand- and gravel-bed open channel flows in the wake region of a bed-mounted horizontal cylinder

Devi, K., Hanmaiahgari, P.R., Balachandar, R., Pu, Jaan H. 23 March 2022 (has links)
Yes / In nature, environmental and geophysical flows frequently encounter submerged cylindrical bodies on a rough bed. The flows around the cylindrical bodies on the rough bed are very complicated as the flow field in these cases will be a function of bed roughness apart from the diameter of the cylinder and the flow velocity. In addition, the sand-bed roughness has different effects on the flow compared to the gravel-bed roughness due to differences in the roughness heights. Therefore, the main objective of this article is to compare the mean velocities and turbulent flow properties in the wake region of a horizontal bed-mounted cylinder over the sand-bed with that over the gravel-bed. Three experimental runs, two for the sand-bed and one for the gravel-bed with similar physical and hydraulic conditions, were recorded to fulfil this purpose. The Acoustic Doppler Velocimetry (ADV) probe was used for measuring the three-dimensional (3D) instantaneous velocity data. This comparative study shows that the magnitude of mean streamwise flow velocity, streamwise Reynolds normal stress, and Reynolds shear stress are reduced on the gravel-bed compared to the sand-bed. Conversely, the vertical velocities and vertical Reynolds normal stress are higher on the gravel-bed than the sand-bed. / The Author Ram Balachandar acknowledges the grant support from Natural Sciences and Engineering Research Council of Canada the author Jaan H. Pu acknowledges the grant support from the Hidden Histories of Environmental Science Project (at Seedgrant Stage) by the Natural Environment Research Council (NERC) and Arts and Humanities Research Council (AHRC), part of UK Research and Innovation (UKRI).
250

Simulation study of an agile high-speed machining system for automotive cylinder heads

Omar, M., Hussain, Khalid, Wright, Christopher S. January 1999 (has links)
There is a continuous need within most manufacturing environments for more flexible production equipment, particularly where customer satisfaction and responsiveness promote quality improvement. In this paper, an automated agile manufacturing system that uses high-speed computer numerically controlled (CNC) machines to make automotive cylinder heads is proposed and evaluated by means of discrete event simulation using the ARENA simulator. Two alternative agile system configurations are constructed and simulated to achieve the production target. The simulation shows some significant benefits in using the agile system and demonstrates that high-speed CNC equipment is a viable option for cylinder head manufacture at a production volume of 550 000 units per annum. It is shown that the agile system can provide more flexibility and half the throughput time of the transfer line.

Page generated in 0.0773 seconds