• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of human gene products homologous to fission yeast multi-drug resistance determinants

Montesanti, Annalisa January 2001 (has links)
No description available.
2

Development of Non-Traditional Platinum Anticancer Agents: trans-Platinum Planar Amine Compounds and Polynuclear Platinum Compounds

Lee, Daniel E 01 January 2015 (has links)
Development of Non-Traditional Platinum Anticancer Agents: trans-Platinum Planar Amine Compounds and Polynuclear Platinum Compounds By Daniel E. Lee, Ph.D. A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University. Virginia Commonwealth University, 2015 Major Director: Nicholas P Farrell, Ph.D., Professor, Department of Chemistry Platinum anticancer compounds with cis geometry, similar to cisplatin, have been explored to circumvent the cisplatin resistance; however, they were not considered broadly active in cisplatin cells due to exhibiting similar or same cell death mechanism as cisplatin. Platinum compounds with trans geometry were less studied due to transplatin being clinically inactive; but with few structural modifications, they resulted in unaffected cytotoxic activities in cisplatin resistant cells with structural modification by exhibiting different modes of DNA binding. This research focused on further exploring and establishing structure-activity relationship of two promising non-classical series of platinum compounds with trans-geometry: trans-platinum planar amine (TPA) compounds and noncovalently binding polynuclear platinum compounds (PPC-NC). During this research, further optimizations of the reactivity of TPA compounds were accomplished by modifying the leaving carboxylate groups. The effects of modified reactivity were probed by a systematic combination of chemical and biophysical assays, followed by evaluating their biological effects in cells. To establish the structural-activity relationship of PPC-NCs, Mono-, Di-, Tri-, and Tetraplatin NC with charge of 4+, 6+, 8+, and 10+ were synthesized and evaluated by utilizing biophysical and biological assays. Lastly, a new class of polynuclear platinum compounds, Hybrid-PPCs, were synthesized and evaluated to overcome the pharmacokinetic problems of BBR3464, phase II clinical trial anticancer drug developed previously in our laboratory.
3

Etude des voies signalétiques impliquées dans la résistance aux agents thérapeuthiques dans le carcinome à cellules rénales humain / Study of signaling pathways involved in resistance to therapeuthic agents in human renal cell carcinoma

Mouracade, Pascal 30 September 2015 (has links)
Le carcinome à cellules rénales (CCR) se caractérise par une résistance importante aux thérapies. Notre hypothèse était que des voies signalétiques prolifératives, anti-apoptotiques et/ou angiogéniques sont mises en jeu dans la résistance aux thérapies. Il s’agissait de mesurer la sensibilité de lignées cellulaires de CCR humain à différentes classes thérapeutiques in vitro et in vivo. Une étude pilote a été réalisée sur la base de xénogreffes de la lignée A498 chez la souris nude, puis exploitée pour des analyses sur biopuces à protéines afin d’identifier les voies de signalisation induites par le sunitinib. In vitro, les lignées cellulaires de CCR se sont révélées sensibles aux thérapies indépendamment du statut VHL. In vivo, la lignée A498 est apparue résistante au sunitinib. L’approche par biopuces a montré que plusieurs protéines de l’angiogenèse sont modulées sous l'effet du traitement, notamment l’angiogénine. Il n’y a pas de modification de l’expression des protéines de l’apoptose testées. Les formes phosphorylées d’Akt sont également augmentées dans les tumeurs traitées, de même que Lim1 alors que la forme phosphorylée de NFκB est diminuée. Ce travail a ainsi identifié de potentielles cibles impliquées dans les mécanismes de résistance et devraient permettre de définir de nouvelles options thérapeutiques dans le cancer du rein. / The renal cell carcinoma is characterized by a high resistance to therapies. Our working hypothesis was that proliferative signaling pathways, anti-apoptotic and / or angiogenic are involved in resistance to therapies. Thus, as part of this thesis, we measured the sensitivity to chemotherapy and targeted therapies in kidney cancer cell lines in vitro as well in vivo.A pilot study was conducted on the basis of the A498 cell line xenografts in nude mice, and then used for analysis on proteome arrays to identify the signaling pathways induced by sunitinib. In vitro, the cell lines of RCC were sensitive to therapy regardless of the VHL status. In vivo, the line A498 appeared resistant to sunitinib. The approach using the proteome array has shown that several angiogenesis proteins are modulated as a result of treatment, including angiogenin. There was no change in the expression of proteins of apoptosis. Phosphorylated forms of Akt were also increased in the treated tumors, as well as Lim1 whereas the phosphorylated form of NFkB was reduced. This work has identified potential targets involved in resistance mechanisms and should define new therapeutic options in renal cancer.
4

Cytotoxicity of Metal Based Anticancer Active Complexes and their Targeted Delivery using Nanoparticles

Pramanik, Anup Kumar January 2016 (has links) (PDF)
Use of metal based anticancer medication began with the clinical approval of cisplatin in 1978. Research led to the development of six platinum based drug candidates which are in use around the world. However there is a great need to develop better treatment strategies. The present work entitled “Cytotoxicity of Metal Based Anticancer Active Complexes and Their Targeted Delivery Using Nanoparticles” is an effort to prepare cytotoxic metal complexes based on platinum(IV) and copper(II) and deliver them selectively to cancer cells using a targeting ligand, biotin, with two different delivery vehicles, viz. PEGylated polyamidoamine dendrimer (PAMAM) and gold nanoparticles (AuNPs). Chapter 1 provides a brief introduction to cancer and its characteristic features, followed by a short description about different treatment modalities in clinical practice. An account of the development of anticancer drugs starting from purely organic drugs to the field of metal based anticancer drugs is discussed. An overview of the available targeting strategies are discussed with specific examples. The section ends with the scope of the present work. Platinum based anticancer drugs currently in use contain platinum in the +2 oxidation state. These drugs showed side effects and are often ineffective against resistant cells, especially in the latter stages of treatment. A recent focus of metal based anticancer drug research is the development of platinum(IV) systems which shows promise to have greater activity in cancer cells in a reducing environment. Reported platinum(IV) dual drugs contain the components of “cisplatin” or an analogue along with an active organic drug. But there are no known dual drugs based on platinum(IV) that would generate a cytotoxic metal complex along with cisplatin. In Chapter 2, a bimetallic dual drug (M4) (Figure 1), the first of its kind, with components of cisplatin and copper bis(thiosemicarbazone) has been prepared (Figure 1). The components and the bimetallic complex were characterized using several spectroscopic techniques. The dual drug M4 was found to be highly cytotoxic (IC50 1.3 M) against HeLa cells and was better than cisplatin (IC50 6.8 M). The bimetallic complex turned out to be better than the mixture (IC50 7.2 M) of individual drugs which indicated possible synergism of the released cisplatin and the copper bis(thiosemicarbazone) from the dual drug. Figure 1: Structure of the platinum(IV) and copper bis(thiosemicarbazone) complexes. A novel approach towards conjugation of platinum(IV) drugs to a carrier has been developed using a malonate moiety (Figure 2). The bis(butyric acid) complex, Pt(NH3)2(OCOC3H7)2Cl2 (M1), was taken as model complex to demonstrate the conjugation strategy. The complex M4 was also conjugated to the partially PEGylated 5th generation PAMAM dendrimers. Figure 2: Schematic representation of the platinum(IV) drug conjugated PAMAM dendrimer. The cytotoxicity of M4 was reduced to a small extent on conjugation to the dendrimer. In the presence of 5 mM sodium ascorbate as a reducing agent, sustained release (40 %) of the drug was shown to occur over a period of 48 h by the drug release study. The reduction in cytotoxicity of the dendrimer conjugates could be due to incomplete release of the active drug. Unfortunately, no enhanced activity was observed with the additional targeting ligand, biotin. The drug uptake study revealed that the dendrimer conjugates were successful in entering cancer cells. There was no preferential uptake with biotin conjugated dendrimers which explained the similar cytotoxicity of dendrimer conjugates with and without biotin. Different delivery vehicles showed varied efficiency in delivering the pay load (drugs) to the cancer site. In this connection, PEGylated gold nanoparticles have shown good promise as a drug delivery vehicle. In Chapter 3, M1 and M4 are both conjugated to malonate functionalized PEGylated gold nanoparticles (30 nm). Biotin was also attached to the AuNPs for targeting HeLa cells. Figure 3: Schematic representation of the platinum(IV) drug and biotin conjugated AuNPs. The AuNPs were highly stable in water without agglomeration. There was no shift in the Surface Plasmon Resonance (SPR) band after conjugation of the drug molecules and targeting ligands. TEM images and DLS measurements showed there was no change in particle size. Drug conjugated AuNPs were also very stable in high salt concentrations as well as over a large range of pH. AuNPs with M1 were found to be less cytotoxic than the parent drug. Biotinylated AuNPs with M1 were more potent than non-biotinylated nanoparticles and increased cytotoxicity (35 %) was observed with biotin conjugation. Surprisingly, the enhanced activity of biotinylated AuNPs could not be correlated to the drug uptake study. The cytotoxicity of the bimetallic dual drug containing AuNPs were about 10-fold less and no increased activity was observed with the biotinylated conjugates. The reduced activity of AuNPs with the bimetallic drug was due to incomplete release from the AuNPs (20 % release after 48 h). But the release kinetics was very slow and sustained which might increase in vivo activity. The unexpected lower activity of biotinylated conjugates with copper bis(thiosemicarbazone) was suggestive of interference between bis(thiosemicarbazone) complex and the biotin receptor resulting in reduced drug uptake. Copper bis(thiosemicarbazone) complexes hold very good promise as a class of non-platinum anticancer drug candidates. However, they lack selectivity towards malignant cells. Recently, CuATSM has shown hypoxia selectivity and very good cytotoxicity resulting in 64CuATSM being used in advanced stages of clinical trials for imaging hypoxic cells. In Chapter 4, a copper bis(thiosemicarbazone) complex analogous to Cu(ATSM) with a redox active cleavable disulfide linker and a terminal carboxylic acid group (CuATSM-SS-COOH) was synthesised and characterised spectroscopically. The complex was highly cytotoxic and has an IC50 value (6.9 M) similar to that of cisplatin against HeLa cells. The complex was conjugated to PEGylated gold nanoparticles by amide coupling between the acid group from the drug molecule and the amine on the AuNPs (20 nm) for smart drug delivery. The gold nanoparticles were decorated with biotin for targeted delivery to the HeLa cells. Figure 4: Schematic representation of the CuATSM-SS-COOH and biotin decorated AuNPs. The CuATSM-SS-COOH was insoluble in water but conjugation to PEGylated gold nanoparticles made it water soluble. The drug molecules and biotin conjugated AuNPs were highly stable which was confirmed by TEM and DLS measurements. Similar to the study described in the previous chapter, these AuNPs were also stable in a wide range of pH and salt concentrations. In vitro glutathione (GSH) triggered release study demonstrated substantial release of the cytotoxic agent from the AuNPs (60 %) over a period of 48 h. In vitro cell viability study with HeLa cells showed reduced cytotoxicity (IC50 15 M) of AuNPs with and without biotin containing drug conjugates relative to the parent copper complex (IC50 6.9 M). The reduction of the cytotoxicity correlated well with the released amount of the active drug from the nanoconjugates over the same time period. In vivo studies demonstrated the effectiveness of these nanoparticle carriers as suitable vehicles as they exhibited nearly four-fold reduction of tumor volume without significant loss in body weight. Moreover, the biotin targeted nanoparticle showed significant (p < 0.5) reduction in tumor volume compared to the non-targeted gold nanoparticles. Thus, this smart linking strategy Can be extended to other cytotoxic complexes that suffer from non-specificity, low aqueous solubility and toxicity. Multinuclear anticancer active complexes do not act in the same way as that of their corresponding mononuclear analogues. In the case of multinuclear platinum complexes, the activity not only depends on the active moiety but also on the spacer length between the moieties. In Chapter 5, a series of multinuclear copper bis(thiosemicarbazone) complexes were prepared and characterised using different techniques. Figure 5: General structures of binuclear copper bis(thiosemicarbazone) complexes. All the complexes showed redox activity and have a very high negative reduction potential, i.e. these compounds would not be easily reduced in the biological medium and would remain as copper(II) species. As the concentration of the reducing agents are more within cancer cells, once these complexes are inside cells they would be reduced to Cu(I). These compounds were shown to be highly lipophilic from the large log P values. Unfortunately, these binuclear complexes were less active than similar mononuclear complexes. One possible reason for the reduced cytotoxicity of these complexes could be adherence of the complexes to the cell membrane due to the high lipophilicity of these complexes. Out of five different methylene spacers between two bis(thiosemicrarbazone) moieties, the complex with a three carbon spacer was shown to be the most active against HeLa cells. The complexes with five and six methylene spacers turn out to be noncytotoxic. Further experiments are necessary to reveal the mechanism of action in these complexes. In summary, bimetallic complexes can be very active and may be a way of overcoming drug resistance in platinum based therapy. A dual drug can be delivered using a malonate moiety and a disulfide linker. Gold nanoparticles are good delivery vehicles for these dual drugs and show great potential for improvement and translation to the next stage. (For figures pl refer the abstract pdf file)

Page generated in 0.0704 seconds