• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 2
  • Tagged with
  • 15
  • 15
  • 9
  • 8
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Optimisation convexe non-différentiable et méthodes de décomposition en recherche opérationnelle / Convex nonsmooth optimization and decomposition methods in operations research

Zaourar, Sofia 04 November 2014 (has links)
Les méthodes de décomposition sont une application du concept de diviser pour régner en optimisation. L'idée est de décomposer un problème d'optimisation donné en une séquence de sous-problèmes plus faciles à résoudre. Bien que ces méthodes soient les meilleures pour un grand nombre de problèmes de recherche opérationnelle, leur application à des problèmes réels de grande taille présente encore de nombreux défis. Cette thèse propose des améliorations méthodologiques et algorithmiques de méthodes de décomposition. Notre approche est basée sur l'analyse convexe et l'optimisation non-différentiable. Dans la décomposition par les contraintes (ou relaxation lagrangienne) du problème de planification de production électrique, même les sous-problèmes sont trop difficiles pour être résolus exactement. Mais des solutions approchées résultent en des prix instables et chahutés. Nous présentons un moyen simple d'améliorer la structure des prix en pénalisant leurs oscillations, en utilisant en particulier une régularisation par variation totale. La consistance de notre approche est illustrée sur des problèmes d'EDF. Nous considérons ensuite la décomposition par les variables (ou de Benders) qui peut avoir une convergence excessivement lente. Avec un point de vue d'optimisation non-différentiable, nous nous concentrons sur l'instabilité de l'algorithme de plans sécants sous-jacent à la méthode. Nous proposons une stabilisation quadratique de l'algorithme de Benders, inspirée par les méthodes de faisceaux en optimisation convexe. L'accélération résultant de cette stabilisation est illustrée sur des problèmes de conception de réseau et de localisation de plates-formes de correspondance (hubs). Nous nous intéressons aussi plus généralement aux problèmes d'optimisation convexe non-différentiable dont l'objectif est coûteux à évaluer. C'est en particulier une situation courante dans les procédures de décomposition. Nous montrons qu'il existe souvent des informations supplémentaires sur le problème, faciles à obtenir mais avec une précision inconnue, qui ne sont pas utilisées dans les algorithmes. Nous proposons un moyen d'incorporer ces informations incontrôlées dans des méthodes classiques d'optimisation convexe non-différentiable. Cette approche est appliquée avec succès à desproblèmes d'optimisation stochastique. Finalement, nous introduisons une stratégie de décomposition pour un problème de réaffectation de machines. Cette décomposition mène à une nouvelle variante de problèmes de conditionnement vectoriel (vectorbin packing) où les boîtes sont de taille variable. Nous proposons des heuristiques efficaces pour ce problème, qui améliorent les résultats de l'état de l'art du conditionnement vectoriel. Une adaptation de ces heuristiques permet de construire des solutions réalisables au problème de réaffectation de machines de Google. / Decomposition methods are an application of the divide and conquer principle to large-scale optimization. Their idea is to decompose a given optimization problem into a sequence of easier subproblems. Although successful for many applications, these methods still present challenges. In this thesis, we propose methodological and algorithmic improvements of decomposition methods and illustrate them on several operations research problems. Our approach heavily relies on convex analysis and nonsmooth optimization. In constraint decomposition (or Lagrangian relaxation) applied to short-term electricity generation management, even the subproblems are too difficult to solve exactly. When solved approximately though, the obtained prices show an unstable noisy behaviour. We present a simple way to improve the structure of the prices by penalizing their noisy behaviour, in particular using a total variation regularization. We illustrate the consistency of our regularization on real-life problems from EDF. We then consider variable decomposition (or Benders decomposition), that can have a very slow convergence. With a nonsmooth optimization point of view on this method, we address the instability of Benders cutting-planes algorithm. We present an algorithmic stabilization inspired by bundle methods for convex optimization. The acceleration provided by this stabilization is illustrated on network design andhub location problems. We also study more general convex nonsmooth problems whose objective function is expensive to evaluate. This situation typically arises in decomposition methods. We show that it often exists extra information about the problem, cheap but with unknown accuracy, that is not used by the algorithms. We propose a way to incorporate this coarseinformation into classical nonsmooth optimization algorithms and apply it successfully to two-stage stochastic problems.Finally, we introduce a decomposition strategy for the machine reassignment problem. This decomposition leads to a new variant of vector bin packing problems, where the bins have variable sizes. We propose fast and efficient heuristics for this problem that improve on state of the art results of vector bin packing problems. An adaptation of these heuristics is also able to generate feasible solutions for Google instances of the machine reassignment problem.
12

Reformulation et décomposition pour un problème d'allocation de ressources dans un réseau optique

Vignac, Benoît 29 January 2010 (has links)
Les réseaux optiques sont aujourd’hui l’élément de base des systèmes de communica- tions modernes, en particulier l’Internet. Grâce au multiplexage en longueurs d’onde et au groupage du tra?c, la bande passante disponible sur une ?bre optique est supérieure à plusieurs térabits par seconde. Cependant les équipements opto-électroniques qui permettent d’opérer ces réseaux sont très coûteux car il doivent fonctionner à un débit très important. Le problème de groupage et du routage d’un ensemble de requêtes couplé avec l’affectation des longueurs d’onde (GRWA) est donc un problème stratégique de première importance. L’objectif est de minimiser le coût du réseau, évalué comme le nombre de ports optiques installés aux nœuds. Il peut être modélisé sous la forme d’un problème d’allocation de ressources dans un réseau à capacité multi-niveaux avec multi-?ots non bifurqués. Cette catégorie de problème est connue pour être très dif?cile compte tenu de la faiblesse de la relaxation linéaire des formulations associées. Les travaux réalisés durant cette thèse ont consisté en le développement de méthodes de résolution pour ce problème à partir de multiples techniques de recherche opéra- tionnelle : méta-heuristique de type recherche avec tabous, décomposition de Dantzig- Wolfe, décomposition de Benders, reformulation en variables binaires, méthode de plans coupants, heuristique d’arrondi. Les méthodes résultantes, dont certaines sont hybrides, permettent d’avoir un aperçu des méthodes ef?caces pour ce type de problème. En partic- ulier, les méthodes basées sur la décomposition de Benders, qui donnent lieu à des procédures d’optimisation hiérarchique dans lesquelles l’affectation de longueurs d’onde est placée au dernier niveau, sont les méthodes les plus ef?caces car elles permettent de séparer le routage optique du routage physique. En?n, nous utilisons la meilleure méthode de résolution pour observer l’impact des contraintes de délais sur la qualité des solutions. / Optical networks are the core element of modern communication systems and in particu- lar Internet. With wavelength multiplexing and grooming capability, terabits per second bandwidth can be reached. However, opto-electronic equipment used to operate these networks are very expensive as their bit rate must be very large. The grooming, routing and wavelength assignment (GRWA) problem, which consists in minimizing the net- work cost, evaluated by the number of required optical ports, while guaranteeing that each request is granted, is of great interest. The GRWA problem can be modeled as a multi-layer capacitated network design problem with non-bifurcated multi-?ows. This type of problem is known to be hard to solve as their linear relaxation is weak. The objective of this work was to develop solution methods based on multiple oper- ations research techniques : Tabu search based meta-heuristic, Dantzig-Wolfe decompo- sition, Benders decomposition, 0 1 reformulation, cutting-planes, rounding heuristic. The resulting solution tools, some of them hybrid, give a perspective on the effective solution approaches for this type of problem. From the experiments, it turns out that the methods based on Benders’ decomposition, which lead to hierarchical optimization procedures, are the most ef?cient as they allow to separate the optical routing from the physical routing with the wavelength assignment decisions taken in the lower stage sub- problem. In addition to the approach comparison, we use the most effective method to evaluate the impact of the delay constraints on the solution quality.
13

Programmation stochastique à deux étapes pour l’ordonnancement des arrivées d’avions sous incertitude

Khassiba, Ahmed 01 1900 (has links)
Cotutelle avec l'Université de Toulouse 3 - Paul Sabatier, France. Laboratoire d'accueil: Laboratoire de recherche de l'École Nationale de l'Aviation Civile (ENAC), équipe OPTIM, Toulouse, France. / Dans le contexte d'une augmentation soutenue du trafic aérien et d'une faible marge d'expansion des capacités aéroportuaires, la pression s'accroît sur les aéroports les plus fréquentés pour une utilisation optimale de leur infrastructure, telle que les pistes, reconnues comme le goulot d'étranglement des opérations aériennes. De ce besoin opérationnel est né le problème d'ordonnancement des atterrissages d'avions, consistant à trouver pour les avions se présentant à un aéroport la séquence et les heures d'atterrissage optimales par rapport à certains critères (utilisation des pistes, coût total des retards, etc) tout en respectant des contraintes opérationnelles et de sécurité. En réponse à ce besoin également, depuis les années 1990 aux États-Unis et en Europe, des outils d'aide à la décision ont été mis à la disposition des contrôleurs aériens, afin de les assister dans leur tâche d'assurer la sécurité et surtout la performance des flux d'arrivée. Un certain nombre de travaux de recherche se sont focalisés sur le cas déterministe et statique du problème d'atterrissage d'avions. Cependant, le problème plus réaliste, de nature stochastique et dynamique, a reçu une attention moindre dans la littérature. De plus, dans le cadre du projet européen de modernisation des systèmes de gestion de trafic aérien, il a été proposé d’étendre l’horizon opérationnel des outils d’aide à la décision de manière à prendre en compte les avions plus loin de l'aéroport de destination. Cette extension de l'horizon opérationnel promet une meilleure gestion des flux d'arrivées via un ordonnancement précoce plus efficient. Néanmoins, elle est inévitablement accompagnée d'une détérioration de la qualité des données d'entrée, rendant indispensable la prise en compte de leur stochasticité. L’objectif de cette thèse est l’ordonnancement des arrivées d’avions, dans le cadre d'un horizon opérationnel étendu, où les heures effectives d'arrivée des avions sont incertaines. Plus précisément, nous proposons une approche basée sur la programmation stochastique à deux étapes. En première étape, les avions sont pris en considération à 2-3 heures de leur atterrissage prévu à l'aéroport de destination. Il s'agit de les ordonnancer à un point de l'espace aérien aéroportuaire, appelé IAF (Initial Approach Fix). Les heures effectives de passage à ce point sont supposées suivre des distributions de probabilité connues. En pratique, cette incertitude peut engendrer un risque à la bonne séparation des avions nécessitant l'intervention des contrôleurs. Afin de limiter la charge de contrôle conséquente, nous introduisons des contraintes en probabilité traduisant le niveau de tolérance aux risques de sécurité à l'IAF après révélation de l'incertitude. La deuxième étape correspond au passage effectif des avions considérés à l'IAF. Comme l'incertitude est révélée, une décision de recours est prise afin d'ordonnancer les avions au seuil de piste en minimisant un critère de deuxième étape (charge de travail des contrôleurs, coût du retard, etc). La démonstration de faisabilité et une étude numérique de ce problème d'ordonnancement des arrivées d'avions en présence d'incertitude constituent la première contribution de la thèse. La modélisation de ce problème sous la forme d’un problème de programmation stochastique à deux étapes et sa résolution par décomposition de Benders constituent la deuxième contribution. Finalement, la troisième contribution étend le modèle proposé au cas opérationnel, plus réaliste où nous considérons plusieurs points d’approche initiale. / Airport operations are well known to be a bottleneck in the air traffic system, which puts more and more pressure on the world busiest airports to optimally schedule landings, in particular, and also – but to a smaller extent – departures. The Aircraft Landing Problem (ALP) has arisen from this operational need. ALP consists in finding for aircraft heading to a given airport a landing sequence and landing times so as to optimize some given criteria (optimizing runway utilization, minimizing delays, etc) while satisfying operational constraints (safety constraints mainly). As a reply to this operational need, decision support tools have been designed and put on service for air traffic controllers since the early nineties in the US as well as in Europe. A considerable number of publications dealing with ALP focus on the deterministic and static case. However, the aircraft landing problem arising in practice has a dynamic nature riddled with uncertainties. In addition, operational horizon of current decision support tools are to be extended so that aircraft are captured at larger distances from the airport to hopefully start the scheduling process earlier. Such a horizon extension affects the quality of input data which enlarges the uncertainty effect. In this thesis, we aim at scheduling aircraft arrivals under uncertainty. For that purpose, we propose an approach based on two-stage stochastic programming. In the first stage, aircraft are captured at a large distance from the destination airport. They are to be scheduled on the same initial approach fix (IAF), a reference point in the near-to-airport area where aircraft start their approach phase preparing for landing. Actual IAF arrival times are assumed to be random variables with known probability distributions. In practice, such an uncertainty may cause loss of safety separations between aircraft. In such situations, air traffic controllers are expected to intervene to ensure air traffic safety. In order to alleviate the consequent air traffic control workload, chance constraints are introduced so that the safety risks around the IAF are limited to an acceptable level once the uncertainty is revealed. The second stage corresponds to the situation where aircraft are actually close to the IAF. In this stage, the uncertainty is revealed and a recourse decision is made in order to schedule aircraft on the runway threshold so that a second-stage cost function is minimized (e.g., air traffic control workload, delay cost, etc). Our first contribution is a proof of concept of the extended aircraft arrival management under uncertainty and a computational study on optimization parameters and problem characteristics. Modeling this problem as a two-stage stochastic programming model and solving it by a Benders decomposition is our second contribution. Finally, our third contribution focuses on extending our model to the more realistic case, where aircraft in the first stage are scheduled on several IAFs.
14

Stochastic optimization of staffing for multiskill call centers

Ta, Thuy Anh 12 1900 (has links)
Dans cette thèse, nous étudions le problème d’optimisation des effectifs dans les centres d’appels, dans lequel nous visons à minimiser les coûts d’exploitation tout en offrant aux clients une qualité de service (QoS) élevée. Nous introduisons également l'utilisation de contraintes probabilistes qui exigent que la qualité de service soit satisfaite avec une probabilité donnée. Ces contraintes sont adéquates dans le cas où la performance est mesurée sur un court intervalle de temps, car les mesures de QoS sont des variables aléatoires sur une période donnée. Les problèmes de personnel proposés sont difficiles en raison de l'absence de forme analytique pour les contraintes probabilistes et doivent être approximées par simulation. En outre, les fonctions QoS sont généralement non linéaires et non convexes. Nous considérons les problèmes d’affectation personnel dans différents contextes et étudions les modèles proposés tant du point de vue théorique que pratique. Les méthodologies développées sont générales, en ce sens qu'elles peuvent être adaptées et appliquées à d'autres problèmes de décision dans les systèmes de files d'attente. La thèse comprend trois articles traitant de différents défis en matière de modélisation et de résolution de problèmes d'optimisation d’affectation personnel dans les centres d'appels à compétences multiples. Les premier et deuxième article concernent un problème d'optimisation d'affectation de personnel en deux étapes sous l'incertitude. Alors que dans le second, nous étudions un modèle général de programmation stochastique discrète en deux étapes pour fournir une garantie théorique de la consistance de l'approximation par moyenne échantillonnale (SAA) lorsque la taille des échantillons tend vers l'infini, le troisième applique l'approche du SAA pour résoudre le problème d’optimisation d'affectation de personnel en deux étapes avec les taux d’arrivée incertain. Les deux articles indiquent la viabilité de l'approche SAA dans notre contexte, tant du point de vue théorique que pratique. Pour être plus précis, dans le premier article, nous considérons un problème stochastique discret général en deux étapes avec des contraintes en espérance. Nous formulons un problème SAA avec échantillonnage imbriqué et nous montrons que, sous certaines hypothèses satisfaites dans les exemples de centres d'appels, il est possible d'obtenir les solutions optimales du problème initial en résolvant son SAA avec des échantillons suffisamment grands. De plus, nous montrons que la probabilité que la solution optimale du problème de l’échantillon soit une solution optimale du problème initial tend vers un de manière exponentielle au fur et à mesure que nous augmentons la taille des échantillons. Ces résultats théoriques sont importants, non seulement pour les applications de centre d'appels, mais également pour d'autres problèmes de prise de décision avec des variables de décision discrètes. Le deuxième article concerne les méthodes de résolution d'un problème d'affectation en personnel en deux étapes sous incertitude du taux d'arrivée. Le problème SAA étant coûteux à résoudre lorsque le nombre de scénarios est important. En effet, pour chaque scénario, il est nécessaire d'effectuer une simulation pour estimer les contraintes de QoS. Nous développons un algorithme combinant simulation, génération de coupes, renforcement de coupes et décomposition de Benders pour résoudre le problème SAA. Nous montrons l'efficacité de l'approche, en particulier lorsque le nombre de scénarios est grand. Dans le dernier article, nous examinons les problèmes de contraintes en probabilité sur les mesures de niveau de service. Notre méthodologie proposée dans cet article est motivée par le fait que les fonctions de QoS affichent généralement des courbes en S et peuvent être bien approximées par des fonctions sigmoïdes appropriées. Sur la base de cette idée, nous avons développé une nouvelle approche combinant la régression non linéaire, la simulation et la recherche locale par région de confiance pour résoudre efficacement les problèmes de personnel à grande échelle de manière viable. L’avantage principal de cette approche est que la procédure d’optimisation peut être formulée comme une séquence de simulations et de résolutions de problèmes de programmation linéaire. Les résultats numériques basés sur des exemples réels de centres d'appels montrent l'efficacité pratique de notre approche. Les méthodologies développées dans cette thèse peuvent être appliquées dans de nombreux autres contextes, par exemple les problèmes de personnel et de planification dans d'autres systèmes basés sur des files d'attente avec d'autres types de contraintes de QoS. Celles-ci soulèvent également plusieurs axes de recherche qu'il pourrait être intéressant d'étudier. Par exemple, une approche de regroupement de scénarios pour atténuer le coût des modèles d'affectation en deux étapes, ou une version d'optimisation robuste en distribution pour mieux gérer l'incertitude des données. / In this thesis, we study the staffing optimization problem in multiskill call centers, in which we aim at minimizing the operating cost while delivering a high quality of service (QoS) to customers. We also introduce the use of chance constraints which require that the QoSs are met with a given probability. These constraints are adequate in the case when the performance is measured over a short time interval as QoS measures are random variables in a given time period. The proposed staffing problems are challenging in the sense that the stochastic constraints have no-closed forms and need to be approximated by simulation. In addition, the QoS functions are typically non-linear and non-convex. We consider staffing optimization problems in different settings and study the proposed models in both theoretical and practical aspects. The methodologies developed are general, in the sense that they can be adapted and applied to other staffing/scheduling problems in queuing-based systems. The thesis consists of three articles dealing with different challenges in modeling and solving staffing optimization problems in multiskill call centers. The first and second articles concern a two-stage staffing optimization problem under uncertainty. While in the first one, we study a general two-stage discrete stochastic programming model to provide a theoretical guarantee for the consistency of the sample average approximation (SAA) when the sample sizes go to infinity, the second one applies the SAA approach to solve the two-stage staffing optimization problem under arrival rate uncertainty. Both papers indicate the viability of the SAA approach in our context, in both theoretical and practical aspects. To be more precise, in the first article, we consider a general two-stage discrete stochastic problem with expected value constraints. We formulate its SAA with nested sampling. We show that under some assumptions that hold in call center examples, one can obtain the optimal solutions of the original problem by solving its SAA with large enough sample sizes. Moreover, we show that the probability that the optimal solution of the sample problem is an optimal solution of the original problem, approaches one exponentially fast as we increase the sample sizes. These theoretical findings are important, not only for call center applications, but also for other decision-making problems with discrete decision variables. The second article concerns solution methods to solve a two-stage staffing problem under arrival rate uncertainty. It is motivated by the fact that the SAA version of the two-stage staffing problem becomes expensive to solve with a large number of scenarios, as for each scenario, one needs to use simulation to approximate the QoS constraints. We develop an algorithm that combines simulation, cut generation, cut strengthening and Benders decomposition to solve the SAA problem. We show the efficiency of the approach, especially when the number of scenarios is large. In the last article, we consider problems with chance constraints on the service level measures. Our methodology proposed in this article is motivated by the fact that the QoS functions generally display ``S-shape'' curves and might be well approximated by appropriate sigmoid functions. Based on this idea, we develop a novel approach that combines non-linear regression, simulation and trust region local search to efficiently solve large-scale staffing problems in a viable way. The main advantage of the approach is that the optimization procedure can be formulated as a sequence of steps of performing simulation and solving linear programming models. Numerical results based on real-life call center examples show the practical viability of our approach. The methodologies developed in this thesis can be applied in many other settings, e.g., staffing and scheduling problems in other queuing-based systems with other types of QoS constraints. These also raise several research directions that might be interesting to investigate. For examples, a clustering approach to mitigate the expensiveness of the two-stage staffing models, or a distributionally robust optimization version to better deal with data uncertainty.
15

Traffic prediction and bilevel network design

Morin, Léonard Ryo 01 1900 (has links)
Cette thèse porte sur la modélisation du trafic dans les réseaux routiers et comment celle-ci est intégrée dans des modèles d'optimisation. Ces deux sujets ont évolué de manière plutôt disjointe: le trafic est prédit par des modèles mathématiques de plus en plus complexes, mais ce progrès n'a pas été incorporé dans les modèles de design de réseau dans lesquels les usagers de la route jouent un rôle crucial. Le but de cet ouvrage est d'intégrer des modèles d'utilités aléatoires calibrés avec de vraies données dans certains modèles biniveaux d'optimisation et ce, par une décomposition de Benders efficace. Cette décomposition particulière s'avère être généralisable par rapport à une grande classe de problèmes communs dans la litérature et permet d'en résoudre des exemples de grande taille. Le premier article présente une méthodologie générale pour utiliser des données GPS d'une flotte de véhicules afin d'estimer les paramètres d'un modèle de demande dit recursive logit. Les traces GPS sont d'abord associées aux liens d'un réseau à l'aide d'un algorithme tenant compte de plusieurs facteurs. Les chemins formés par ces suites de liens et leurs caractéristiques sont utilisés afin d'estimer les paramètres d'un modèle de choix. Ces paramètres représentent la perception qu'ont les usagers de chacune de ces caractéristiques par rapport au choix de leur chemin. Les données utilisées dans cet article proviennent des véhicules appartenant à plusieurs compagnies de transport opérant principalement dans la région de Montréal. Le deuxième article aborde l'intégration d'un modèle de choix de chemin avec utilités aléatoires dans une nouvelle formulation biniveau pour le problème de capture de flot de trafic. Le modèle proposé permet de représenter différents comportements des usagers par rapport à leur choix de chemin en définissant les utilités d'arcs appropriées. Ces utilités sont stochastiques ce qui contribue d'autant plus à capturer un comportement réaliste des usagers. Le modèle biniveau est rendu linéaire à travers l'ajout d'un terme lagrangien basé sur la dualité forte et ceci mène à une décomposition de Benders particulièrement efficace. Les expériences numériques sont principalement menés sur un réseau représentant la ville de Winnipeg ce qui démontre la possibilité de résoudre des problèmes de taille relativement grande. Le troisième article démontre que l'approche du second article peut s'appliquer à une forme particulière de modèles biniveaux qui comprennent plusieurs problèmes différents. La décomposition est d'abord présentée dans un cadre général, puis dans un contexte où le second niveau du modèle biniveau est un problème de plus courts chemins. Afin d'établir que ce contexte inclut plusieurs applications, deux applications distinctes sont adaptées à la forme requise: le transport de matières dangeureuses et la capture de flot de trafic déterministe. Une troisième application, la conception et l'établissement de prix de réseau simultanés, est aussi présentée de manière similaire à l'Annexe B de cette thèse. / The subject of this thesis is the modeling of traffic in road networks and its integration in optimization models. In the literature, these two topics have to a large extent evolved independently: traffic is predicted more accurately by increasingly complex mathematical models, but this progress has not been incorporated in network design models where road users play a crucial role. The goal of this work is to integrate random utility models calibrated with real data into bilevel optimization models through an efficient Benders decomposition. This particular decomposition generalizes to a wide class of problems commonly found in the literature and can be used to solved large-scale instances. The first article presents a general methodology to use GPS data gathered from a fleet of vehicles to estimate the parameters of a recursive logit demand model. The GPS traces are first matched to the arcs of a network through an algorithm taking into account various factors. The paths resulting from these sequences of arcs, along with their characteristics, are used to estimate parameters of a choice model. The parameters represent users' perception of each of these characteristics in regards to their path choice behaviour. The data used in this article comes from trucks used by a number of transportation companies operating mainly in the Montreal region. The second article addresses the integration of a random utility maximization model in a new bilevel formulation for the general flow capture problem. The proposed model allows for a representation of different user behaviors in regards to their path choice by defining appropriate arc utilities. These arc utilities are stochastic which further contributes in capturing real user behavior. This bilevel model is linearized through the inclusion of a Lagrangian term based on strong duality which paves the way for a particularly efficient Benders decomposition. The numerical experiments are mostly conducted on a network representing the city of Winnipeg which demonstrates the ability to solve problems of a relatively large size. The third article illustrates how the approach used in the second article can be generalized to a particular form of bilevel models which encompasses many different problems. The decomposition is first presented in a general setting and subsequently in a context where the lower level of the bilevel model is a shortest path problem. In order to demonstrate that this form is general, two distinct applications are adapted to fit the required form: hazmat transportation network design and general flow capture. A third application, joint network design and pricing, is also similarly explored in Appendix B of this thesis.

Page generated in 0.1387 seconds