• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 1
  • 1
  • Tagged with
  • 28
  • 8
  • 7
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Polymérisation du décaméthylcyclopentasiloxane à l’aide de superbases : vers une nouvelle voie de synthèse des copolymères à blocs / Polymerization of decamethylcyclopentasiloxane initiated by superbases : a new way to reach block copolymers

Pibre, Guillaume 15 October 2009 (has links)
Dans l’optique de développement de matériaux performants avec une approche respectueuse de l’environnement, l’obtention de copolymères à blocs de type hard-soft avec une forte proportion de polydiméthylsiloxane (PDMS) en utilisant le procédé d’extrusion est une étape vers des élastomères thermoplastiques d’intérêt. Afin de s’affranchir de la faible réactivité des extrémités de chaînes des longues macromolécules, la voie originale mise en avant consiste en la réalisation de copolymères ayant une partie centrale PDMS courte puis en l’allongement de celle-ci selon les propriétés visées. L’étape critique d’allongement est effectuée à l’aide de bases phosphazènes comme agents de polymérisation de décaméthylcyclopentasiloxane (D5). Dans un premier temps, une approche chemio-rhéologique de la polymérisation du D5 à l’aide de ces superbases a été réalisée. L’acquisition des données intrinsèques de cette réaction permet de mettre au point la modélisation de l’évolution de viscosité du système en cours de réaction, vérifiant ainsi sa compatibilité avec l’utilisation de l’extrusion réactive. Dans un second temps, l’utilisation d’une architecture modèle de PDMS fonctionnalisé en bout de chaîne par des groupements chimiques volumineux de type naphtyl valide l’hypothèse d’allongement du chaînon central par insertion de D5 selon cette catalyse. Finalement, cette approche a été appliquée à des architectures macromoléculaires de type poly(styrène-b-diméthylsiloxane-b-styrène). Dans ce cas, les résultats sont, à cette heure, moins probants. Ceci est potentiellement dû à l’aspect procédé de nos manipulations. Cette dernière observation révèle l’intérêt de l’extrusion dans ce type de synthèse. / Nowadays the development of performing new materials using an environmental friendly route is a challenge. To produce hard-soft block copolymers based on a high polydimethylsiloxane (PDMS) content using reactive extrusion process is a milestone to reach thermoplastic elastomers. Because of the low reactivity of high molecular weight macromolecule chain ends an original route is described. It consists in the synthesis of copolymers containing low central PDMS and then increasing the molecular weight of this central part. This crucial step is performed using phosphazene bases as polymerization agents of decamethylcyclopentasiloxane (D5). Firstly, the polymerization of D5 by phosphazene bases has been investigated by chemiorheological means. To define intrinsic data of this reaction allows modelling the viscosity change during the chemical reaction. Thus, it is observed this polymerization system is compatible with reactive extrusion. Secondly, we investigate the hypothesis of increasing the molecular weight of a short central PDMS part in a triblock copolymer by D5 insertion using the catalysis system previously described. Naphtyl end-chain functionalized PDMS was used as a model. So we confirmed this route as an interesting one to achieve the targeted macromolecular architectures. Finally, we tried to produce poly(styrene-b-dimethylsiloxane-b-styrene) through this way. In this case, early investigations are not so convincing. This may come from the experimental device used. This last observation stresses out the great potential of extrusion process to implement such a route to reach thermoplastic elastomers based on high polysiloxane content.
12

Crack tip opening displacement (CTOD) in single edge notched bend (SEN(B))

Khor, WeeLiam January 2018 (has links)
This thesis investigates the quantity Crack Tip Opening Displacement (CTOD) as a means to assess fracture toughness when measured in the Single Edge Notched Bend (SENB) specimen setup. A particular objective is to assess the effectiveness of the test when used for high strain-hardening materials (e.g. stainless steels). This has been an increasing concern as the current available methods were generally designed for lower strain hardening structural steel. Experimental work on CTOD tests included silicone casting of the crack, and constant displacement tests were also performed. The silicone castings enable physical measurement of the crack under an optical microscope. Results from a series of Finite Element (FE) models were validated from the experiments. δ5 surface measurements were obtained using Digital Image Correlation (DIC) as a courtesy of TWI, which were compared to surface CTOD measurements from the silicone castings. In addition to the experiments and Finite Element modelling, archived test data from TWI was processed, showing analytical differences between current Standard CTOD equations. CTOD calculations from BS 7448, ISO 12135, ASTM E1820 and WES 1108 were compared to the experimental and FE modelling results. For high strain hardening material, CTOD predicted by Standard equations (apart from those in BS 7448 and single point CTOD from ISO 12135) were lower than the values determined from silicone measurements and modelling. This potentially leads to over conservative values to be used in Engineering Critical Assessments (ECA) or material approval. Based on a series of different strain hardening property models, a relationship between strain hardening and the specimen rotational factor, rp was established. An improved equation for the calculation of CTOD is proposed, which gave good estimation of the experimental and Finite Element modelling results. The improved equation will be proposed for future amendments of the ISO 12135 standard. The results of this research enable the accurate fracture characterisation of a range of engineering alloys, with both low and high strain hardening behaviour in both the brittle and ductile fracture regime.
13

Comprehensive Model of G Protein-coupled Receptor Regulation by Protein Kinase C: Insight from Dopamine D1 and D5 Receptor Studies.

Plouffe, Bianca 18 January 2012 (has links)
Dopamine receptors belong to the G protein-coupled receptor (GPCR) superfamily and are classified into two families: D1-like (D1R and D5R) and D2-like (D2R, D3R and D4R), based on their ability to stimulate or inhibit adenylyl cyclase (AC). Classically, GPCRs (including D2R and D3R) are desensitized by the activation of the serine/threonine protein kinase C (PKC) upon phorbol-12-myristate-13-acetate (PMA) treatment. Previous studies demonstrate that while human D5R (hD5R) is also strongly desensitized upon PMA treatment, the human D1R (hD1R) undergo a robust PMA-induced sensitization. The aim of this PhD thesis was to explore how the canonical PKC- or phorbol ester-linked pathway can control the responsiveness of two similar GPCRs like hD1R and hD5R in an opposite fashion. Our data indicate that hD1R sensitization and hD5R desensitization are not mediated by a direct modulation of AC activity by PKC. Using a chimeric approach, we identified the third intracellular loop (IL3) as the key structural determinant controlling in an opposite manner the PMA-mediated regulation of hD1R and hD5R. To delineate the potential PKC phosphorylation sites, a series of mutation of serine (Ser) and threonine (Thr) located into IL3 of hD1R and hD5R were used. No hD1R mutation decreased the PMA-mediated sensitization. This suggests that hD1R phosphorylation is not required for PMA-induced sensitization. In contrast, our results indicate that PMA-mediated hD5R desensitization occurs through a hierarchical phosphorylation of Ser260, Ser261, Ser271 and Ser274. Notably, these hD5R mutants exhibited a PMA-induced sensitization, reminiscent of the PMA-induced hD1R sensitization. Additionally, using short hairpin RNAs (shRNAs), we showed that PKCε is the potentiating PKC while the desensitizing isoform is δ. Overall, our work suggests the presence or absence of specific Ser residues on IL3 of hD1-like receptors dictate if phosphorylation-dependent desensitization (through PKCδ) or phosphorylation-independent potentiation (via PKCε) will occur.
14

Actors : a model of concurrent computation in distributed systems

January 1986 (has links)
Gul A. Agha. / Includes index. / Bibliography: p. 137-140.
15

Learning to focus and focusing to learn : more than a cortical trick

Dhawan, Sandeep Sonny January 2018 (has links)
The consequence of many psychiatric and neurodegenerative disorders, such as Parkinson's disease and schizophrenia, is an impairment in ‘executive functioning'; an umbrella term for several cognitive processes, including the focussing and shifting of attention and the inhibition of responding. The ability to form an ‘attentional set' involves learning to discriminate qualities of a multidimensional cue, and to subsequently learn which quality is relevant, and therefore predictive of reward. According to recent research, the subthalamic nucleus (STN) and possibly the adjacent zona incerta (ZI) may mediate the formation of attentional set. Dysregulation of the STN as a result of Parkinson's disease contributes to characteristic motor symptoms, and whilst deep-brain stimulation of this region may treat gross motor impairments, it may also impair cognition. The work in this thesis aimed to expand our understanding of the mechanisms of attentional set-formation, and the role of the STN in this process. This thesis evaluates new methods for examining set-formation in the attentional set-shifting task; rather than inferring this behaviour solely from the cost of shifting set, modifications to the task design in Chapters 3 & 4 explored several hypotheses designed to exploit a deficit in this behaviour. Chapter 6 revealed that inhibition of this region with designer receptors leads to a disruption in attentional selectivity, which compromises the ability to form an attentional set. This manifested as an inability to parse relevant information from irrelevant, and instead, animals learned the stimuli holistically. The findings in this thesis also suggested that reversal and attentional shifting processes do not operate independently, but rather in a hierarchy, and that consequently, the STN is a region that may be crucial in selecting appropriate responses during associative learning that leads to the formation of an attentional set.
16

Comprehensive Model of G Protein-coupled Receptor Regulation by Protein Kinase C: Insight from Dopamine D1 and D5 Receptor Studies.

Plouffe, Bianca January 2012 (has links)
Dopamine receptors belong to the G protein-coupled receptor (GPCR) superfamily and are classified into two families: D1-like (D1R and D5R) and D2-like (D2R, D3R and D4R), based on their ability to stimulate or inhibit adenylyl cyclase (AC). Classically, GPCRs (including D2R and D3R) are desensitized by the activation of the serine/threonine protein kinase C (PKC) upon phorbol-12-myristate-13-acetate (PMA) treatment. Previous studies demonstrate that while human D5R (hD5R) is also strongly desensitized upon PMA treatment, the human D1R (hD1R) undergo a robust PMA-induced sensitization. The aim of this PhD thesis was to explore how the canonical PKC- or phorbol ester-linked pathway can control the responsiveness of two similar GPCRs like hD1R and hD5R in an opposite fashion. Our data indicate that hD1R sensitization and hD5R desensitization are not mediated by a direct modulation of AC activity by PKC. Using a chimeric approach, we identified the third intracellular loop (IL3) as the key structural determinant controlling in an opposite manner the PMA-mediated regulation of hD1R and hD5R. To delineate the potential PKC phosphorylation sites, a series of mutation of serine (Ser) and threonine (Thr) located into IL3 of hD1R and hD5R were used. No hD1R mutation decreased the PMA-mediated sensitization. This suggests that hD1R phosphorylation is not required for PMA-induced sensitization. In contrast, our results indicate that PMA-mediated hD5R desensitization occurs through a hierarchical phosphorylation of Ser260, Ser261, Ser271 and Ser274. Notably, these hD5R mutants exhibited a PMA-induced sensitization, reminiscent of the PMA-induced hD1R sensitization. Additionally, using short hairpin RNAs (shRNAs), we showed that PKCε is the potentiating PKC while the desensitizing isoform is δ. Overall, our work suggests the presence or absence of specific Ser residues on IL3 of hD1-like receptors dictate if phosphorylation-dependent desensitization (through PKCδ) or phosphorylation-independent potentiation (via PKCε) will occur.
17

The Role of the Central Region of the Third Intracellular Loop of D1-Class Receptors in Signalling

Charrette, Andrew 17 July 2012 (has links)
The D1-class receptors (D1R, D5R) each possess distinct signaling characteristics; however, pharmacological selectivity between them remains elusive. The third intracellular loops (IL3) of D1R and D5R harbour divergent residues that may contribute to their individual signalling phenotypes. Here we probe the function of central region of IL3 of D1R and D5R using deletion mutagenesis. Radioligand binding and whole cell cAMP assays suggest that the N-terminal and C-terminal moieties of the central IL3 oppositely contribute to the constitutive and agonist-dependant activity of D1-Class receptors. Whereas the N-terminal deletions ablated constitutive activity and decreased DA-induced activation, C-terminal deletions induced robust increases. These data, interpreted in concert with structural predictions generated from homology modeling implicate the central IL3 as playing an important role in the activation and subtype-specific characteristics of the D1-class receptors. This study may serve as a basis for the development of novel drugs targeting the central IL3 region.
18

Polymérisation du décaméthylcyclopentasiloxane à l'aide de superbases : vers une nouvelle voie de synthèse des copolymères à blocs

Pibre, Guillaume 15 October 2009 (has links) (PDF)
Dans l'optique de développement de matériaux performants avec une approche respectueuse de l'environnement, l'obtention de copolymères à blocs de type hard-soft avec une forte proportion de polydiméthylsiloxane (PDMS) en utilisant le procédé d'extrusion est une étape vers des élastomères thermoplastiques d'intérêt. Afin de s'affranchir de la faible réactivité des extrémités de chaînes des longues macromolécules, la voie originale mise en avant consiste en la réalisation de copolymères ayant une partie centrale PDMS courte puis en l'allongement de celle-ci selon les propriétés visées. L'étape critique d'allongement est effectuée à l'aide de bases phosphazènes comme agents de polymérisation de décaméthylcyclopentasiloxane (D5). Dans un premier temps, une approche chemio-rhéologique de la polymérisation du D5 à l'aide de ces superbases a été réalisée. L'acquisition des données intrinsèques de cette réaction permet de mettre au point la modélisation de l'évolution de viscosité du système en cours de réaction, vérifiant ainsi sa compatibilité avec l'utilisation de l'extrusion réactive. Dans un second temps, l'utilisation d'une architecture modèle de PDMS fonctionnalisé en bout de chaîne par des groupements chimiques volumineux de type naphtyl valide l'hypothèse d'allongement du chaînon central par insertion de D5 selon cette catalyse. Finalement, cette approche a été appliquée à des architectures macromoléculaires de type poly(styrène-b-diméthylsiloxane-b-styrène). Dans ce cas, les résultats sont, à cette heure, moins probants. Ceci est potentiellement dû à l'aspect procédé de nos manipulations. Cette dernière observation révèle l'intérêt de l'extrusion dans ce type de synthèse.
19

The Role of the Central Region of the Third Intracellular Loop of D1-Class Receptors in Signalling

Charrette, Andrew 17 July 2012 (has links)
The D1-class receptors (D1R, D5R) each possess distinct signaling characteristics; however, pharmacological selectivity between them remains elusive. The third intracellular loops (IL3) of D1R and D5R harbour divergent residues that may contribute to their individual signalling phenotypes. Here we probe the function of central region of IL3 of D1R and D5R using deletion mutagenesis. Radioligand binding and whole cell cAMP assays suggest that the N-terminal and C-terminal moieties of the central IL3 oppositely contribute to the constitutive and agonist-dependant activity of D1-Class receptors. Whereas the N-terminal deletions ablated constitutive activity and decreased DA-induced activation, C-terminal deletions induced robust increases. These data, interpreted in concert with structural predictions generated from homology modeling implicate the central IL3 as playing an important role in the activation and subtype-specific characteristics of the D1-class receptors. This study may serve as a basis for the development of novel drugs targeting the central IL3 region.
20

The Role of the Central Region of the Third Intracellular Loop of D1-Class Receptors in Signalling

Charrette, Andrew January 2012 (has links)
The D1-class receptors (D1R, D5R) each possess distinct signaling characteristics; however, pharmacological selectivity between them remains elusive. The third intracellular loops (IL3) of D1R and D5R harbour divergent residues that may contribute to their individual signalling phenotypes. Here we probe the function of central region of IL3 of D1R and D5R using deletion mutagenesis. Radioligand binding and whole cell cAMP assays suggest that the N-terminal and C-terminal moieties of the central IL3 oppositely contribute to the constitutive and agonist-dependant activity of D1-Class receptors. Whereas the N-terminal deletions ablated constitutive activity and decreased DA-induced activation, C-terminal deletions induced robust increases. These data, interpreted in concert with structural predictions generated from homology modeling implicate the central IL3 as playing an important role in the activation and subtype-specific characteristics of the D1-class receptors. This study may serve as a basis for the development of novel drugs targeting the central IL3 region.

Page generated in 0.0317 seconds