1 |
Alguns modelos para dados de contagem resultantes de experimentos com cultura de tecidos / not availableFioravante, Ana Maria 30 January 1996 (has links)
Em experimentos com cultura de tecidos é comum a obtenção de dados de contagem. Pode-se admitir, a princípio, que contagens seguem a distribuição de Poisson. Neste trabalho, utilizando-se o enfoque de modelos lineares generalizados, são apresentados os modelos Poisson, Poisson truncado e binomial negativo para a análise de dados de contagem resultantes de experimentos com cultura de tecidos. Esses dados, via de regra, apresentam o número de observações iguais a zero maior do que seria esperado com base no número médio de eventos que ocorrem. Outro problema que esses dados podem apresentar é a ocorrência de superdispersão. Quando essas situações se verificam, o modelo Poisson não se ajusta bem aos dados e os modelos Poisson truncado e binomial negativo são apresentados como alternativas para esse problema. Como aplicação, foram utilizados três conjuntos de dados e a variável resposta estudada foi o número de calos produzidos por explante entre os modelos Poisson e Poisson truncado. Este foi o que melhor se ajustou ao conjunto A de dados, que não apresentou superdispersão. Para o conjunto B de dados, que apresentou superdispersão, o melhor modelo foi o binomial negativo, e para o conjunto C de dados, que também não apresentou superdispersão, o modelo Poisson ofereceu um bom ajuste / not available
|
2 |
Alguns modelos para dados de contagem resultantes de experimentos com cultura de tecidos / not availableAna Maria Fioravante 30 January 1996 (has links)
Em experimentos com cultura de tecidos é comum a obtenção de dados de contagem. Pode-se admitir, a princípio, que contagens seguem a distribuição de Poisson. Neste trabalho, utilizando-se o enfoque de modelos lineares generalizados, são apresentados os modelos Poisson, Poisson truncado e binomial negativo para a análise de dados de contagem resultantes de experimentos com cultura de tecidos. Esses dados, via de regra, apresentam o número de observações iguais a zero maior do que seria esperado com base no número médio de eventos que ocorrem. Outro problema que esses dados podem apresentar é a ocorrência de superdispersão. Quando essas situações se verificam, o modelo Poisson não se ajusta bem aos dados e os modelos Poisson truncado e binomial negativo são apresentados como alternativas para esse problema. Como aplicação, foram utilizados três conjuntos de dados e a variável resposta estudada foi o número de calos produzidos por explante entre os modelos Poisson e Poisson truncado. Este foi o que melhor se ajustou ao conjunto A de dados, que não apresentou superdispersão. Para o conjunto B de dados, que apresentou superdispersão, o melhor modelo foi o binomial negativo, e para o conjunto C de dados, que também não apresentou superdispersão, o modelo Poisson ofereceu um bom ajuste / not available
|
3 |
Análise estatística para dados de contagem longitudinais na presença de covariáveis: aplicações na área médica / Statistical Analyze For Longitudinal Counting Data in Presence of Covariates: Application in Medical ResearchBarros, Emilio Augusto Coelho 09 February 2009 (has links)
COELHO-BARROS, E. A. Analise estatstica para dados de contagem longitudinais na presenca de covariaveis: Aplicações na area medica. Dissertação (mestrado) - Faculdade de Medicina de Ribeirão Preto - USP, Ribeirão Preto - SP - Brasil, 2009. Dados de contagem ao longo do tempo na presenca de covariaveis são muito comuns em estudos na area da saude coletiva, por exemplo; numero de doenças que uma pessoa, com alguma caracteristica especifica, adquiriu ao longo de um período de tempo; numero de internações hospitalares em um período de tempo, devido a algum tipo de doença; numero de doadores de orgãos em um período de tempo. Nesse trabalho são apresentados diferentes modelos estatsticos de\\fragilidade\" de Poisson para a analise estatística de dados de contagem longitudinais. Teoricamente, a distribuição de Poisson exige que a media seja igual a variância, quando isto não ocorre tem-se a presenca de uma variabilidade extra-Poisson. Os modelos estatsticos propostos nesta dissertação incorporam a variabilidade extra-Poisson e capturam uma possvel correlação entre as contagens para o mesmo indivduo. Para cada modelo foi feito uma analise Bayesiana Hierarquica considerando os metodos MCMC (Markov Chain Monte Carlo). Utilizando bancos de dados reais, cedidos por pesquisadores auxiliados pelo CEMEQ (Centro de Metodos Quantitativos, USP/FMRP), foram discutidos alguns aspectos de discriminação Bayesiana para a escolha do melhor modelo. Um exemplo de banco de dados reais, discutido na Seção 4 dessa dissertação, que se encaixa na area da saude coletiva, e composto de um estudo prospectivo, aberto e randomizado, realizado em pacientes infectados pelo HIV que procuraram atendimento na Unidade Especial de Terapia de Doencas Infecciosas (UETDI) do Hospital das Clnicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (HCFMRP-USP). Os esquemas terapêuticos estudados consistiam em zidovudina e lamivudina, associadas ao efavirenz ou lopinavir. Entre setembro de 2004 e maio de 2006 foram avaliados 66 pacientes, sendo 43 deles includos no estudo. Destes, 39 participantes alcançaram a semana 24 de acompanhamento, enquanto 27 atingiram a semana 48. Os grupos de pacientes apresentavam características basais semelhantes, quanto a idade, sexo, mediana de CD4 e carga viral. O interesse desse experimento e estudar a contagem de CD4 considerando os dois esquemas terapêuticos (efavirenz e lopinavir). / COELHO-BARROS, E. A. Analise estatstica para dados de contagem longitudinais na presenca de covariaveis: Aplicac~oes na area medica. Dissertac~ao (mestrado) - Faculdade de Medicina de Ribeir~ao Preto - USP, Ribeir~ao Preto - SP - Brasil, 2009. Longitudinal counting data in the presence of covariates is very common in many applications, especially considering medical data. In this work we present dierent \\frailty\"models to analyze longitudinal Poisson data in the presence of covariates. These models incorporate the extra-Poisson variability and the possible correlation among the repeated counting data for each individual. A hierarchical Bayesian analysis is introduced for each dierent model considering usual MCMC (Markov Chain Monte Carlo) methods. Considering reals biological data set (obtained from CEMEQ, Medical School of Ribeir~ao Preto, University of S~ao Paulo, Brazil), we also discuss some Bayesian discrimination aspects for the choice of the best model. In Section 4 is considering a data set related to an open prospective and randomized study, considering of HIV infected patients, free of treatments, which entered the Infection Diseases Therapy Special Unit (UETDI) of the Clinical Hospital of the Medical School of Ribeir~ao Preto, University of S~ao Paulo (HCFMRP-USP). The therapeutic treatments consisted of the drugs Zidovudine and Lamivudine, associated to Efavirenz and Lopinavir. The data set was related to 66 patients followed from September, 2004 to may, 2006, from which, 43 were included in the study. The patients groups presented similar basal characteristics in terms of sex, age, CD4 counting median and viral load. The main goal of this study was to compare the CD4 cells counting for the two treatments, based on the drugs Efavirenz and Lopinavir, recently adopted as preferencial for the initial treatment of the disease.
|
4 |
Equações de estimação generalizadas com resposta binomial negativa: modelando dados correlacionados de contagem com sobredispersão / Generalized estimating equations with negative binomial responses: modeling correlated count data with overdispersionOesselmann, Clarissa Cardoso 12 December 2016 (has links)
Uma suposição muito comum na análise de modelos de regressão é a de respostas independentes. No entanto, quando trabalhamos com dados longitudinais ou agrupados essa suposição pode não fazer sentido. Para resolver esse problema existem diversas metodologias, e talvez a mais conhecida, no contexto não Gaussiano, é a metodologia de Equações de Estimação Generalizadas (EEGs), que possui similaridades com os Modelos Lineares Generalizados (MLGs). Essas similaridades envolvem a classificação do modelo em torno de distribuições da família exponencial e da especificação de uma função de variância. A única diferença é que nessa função também é inserida uma matriz trabalho que inclui a parametrização da estrutura de correlação dentro das unidades experimentais. O principal objetivo desta dissertação é estudar como esses modelos se comportam em uma situação específica, de dados de contagem com sobredispersão. Quando trabalhamos com MLGs esse problema é resolvido através do ajuste de um modelo com resposta binomial negativa (BN), e a ideia é a mesma para os modelos envolvendo EEGs. Essa dissertação visa rever as teorias existentes em EEGs no geral e para o caso específico quando a resposta marginal é BN, e além disso mostrar como essa metodologia se aplica na prática, com três exemplos diferentes de dados correlacionados com respostas de contagem. / An assumption that is common in the analysis of regression models is that of independent responses. However, when working with longitudinal or grouped data this assumption may not have sense. To solve this problem there are several methods, but perhaps the best known, in the non Gaussian context, is the one based on Generalized Estimating Equations (GEE), which has similarities with Generalized Linear Models (GLM). Such similarities involve the classification of the model around the exponential family and the specification of a variance function. The only diference is that in this function is also inserted a working correlation matrix concerning the correlations within the experimental units. The main objective of this dissertation is to study how these models behave in a specific situation, which is the one on count data with overdispersion. When we work with GLM this kind of problem is solved by setting a model with a negative binomial response (NB), and the idea is the same for the GEE methodology. This dissertation aims to review in general the GEE methodology and for the specific case when the responses follow marginal negative binomial distributions. In addition, we show how this methodology is applied in practice, with three examples of correlated data with count responses.
|
5 |
Análise estatística para dados de contagem longitudinais na presença de covariáveis: aplicações na área médica / Statistical Analyze For Longitudinal Counting Data in Presence of Covariates: Application in Medical ResearchEmilio Augusto Coelho Barros 09 February 2009 (has links)
COELHO-BARROS, E. A. Analise estatstica para dados de contagem longitudinais na presenca de covariaveis: Aplicações na area medica. Dissertação (mestrado) - Faculdade de Medicina de Ribeirão Preto - USP, Ribeirão Preto - SP - Brasil, 2009. Dados de contagem ao longo do tempo na presenca de covariaveis são muito comuns em estudos na area da saude coletiva, por exemplo; numero de doenças que uma pessoa, com alguma caracteristica especifica, adquiriu ao longo de um período de tempo; numero de internações hospitalares em um período de tempo, devido a algum tipo de doença; numero de doadores de orgãos em um período de tempo. Nesse trabalho são apresentados diferentes modelos estatsticos de\\fragilidade\" de Poisson para a analise estatística de dados de contagem longitudinais. Teoricamente, a distribuição de Poisson exige que a media seja igual a variância, quando isto não ocorre tem-se a presenca de uma variabilidade extra-Poisson. Os modelos estatsticos propostos nesta dissertação incorporam a variabilidade extra-Poisson e capturam uma possvel correlação entre as contagens para o mesmo indivduo. Para cada modelo foi feito uma analise Bayesiana Hierarquica considerando os metodos MCMC (Markov Chain Monte Carlo). Utilizando bancos de dados reais, cedidos por pesquisadores auxiliados pelo CEMEQ (Centro de Metodos Quantitativos, USP/FMRP), foram discutidos alguns aspectos de discriminação Bayesiana para a escolha do melhor modelo. Um exemplo de banco de dados reais, discutido na Seção 4 dessa dissertação, que se encaixa na area da saude coletiva, e composto de um estudo prospectivo, aberto e randomizado, realizado em pacientes infectados pelo HIV que procuraram atendimento na Unidade Especial de Terapia de Doencas Infecciosas (UETDI) do Hospital das Clnicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (HCFMRP-USP). Os esquemas terapêuticos estudados consistiam em zidovudina e lamivudina, associadas ao efavirenz ou lopinavir. Entre setembro de 2004 e maio de 2006 foram avaliados 66 pacientes, sendo 43 deles includos no estudo. Destes, 39 participantes alcançaram a semana 24 de acompanhamento, enquanto 27 atingiram a semana 48. Os grupos de pacientes apresentavam características basais semelhantes, quanto a idade, sexo, mediana de CD4 e carga viral. O interesse desse experimento e estudar a contagem de CD4 considerando os dois esquemas terapêuticos (efavirenz e lopinavir). / COELHO-BARROS, E. A. Analise estatstica para dados de contagem longitudinais na presenca de covariaveis: Aplicac~oes na area medica. Dissertac~ao (mestrado) - Faculdade de Medicina de Ribeir~ao Preto - USP, Ribeir~ao Preto - SP - Brasil, 2009. Longitudinal counting data in the presence of covariates is very common in many applications, especially considering medical data. In this work we present dierent \\frailty\"models to analyze longitudinal Poisson data in the presence of covariates. These models incorporate the extra-Poisson variability and the possible correlation among the repeated counting data for each individual. A hierarchical Bayesian analysis is introduced for each dierent model considering usual MCMC (Markov Chain Monte Carlo) methods. Considering reals biological data set (obtained from CEMEQ, Medical School of Ribeir~ao Preto, University of S~ao Paulo, Brazil), we also discuss some Bayesian discrimination aspects for the choice of the best model. In Section 4 is considering a data set related to an open prospective and randomized study, considering of HIV infected patients, free of treatments, which entered the Infection Diseases Therapy Special Unit (UETDI) of the Clinical Hospital of the Medical School of Ribeir~ao Preto, University of S~ao Paulo (HCFMRP-USP). The therapeutic treatments consisted of the drugs Zidovudine and Lamivudine, associated to Efavirenz and Lopinavir. The data set was related to 66 patients followed from September, 2004 to may, 2006, from which, 43 were included in the study. The patients groups presented similar basal characteristics in terms of sex, age, CD4 counting median and viral load. The main goal of this study was to compare the CD4 cells counting for the two treatments, based on the drugs Efavirenz and Lopinavir, recently adopted as preferencial for the initial treatment of the disease.
|
6 |
Modelos para dados de Contagem : um estudo sobre o número de ovos do mosquito Aedes aegypti.Nagamine, Camila Macedo Lima 22 July 2007 (has links)
Made available in DSpace on 2016-06-02T20:05:59Z (GMT). No. of bitstreams: 1
DissCMLN.pdf: 11627851 bytes, checksum: 40cb68e8fa183a86835c193d08d4a6ac (MD5)
Previous issue date: 2007-07-22 / Financiadora de Estudos e Projetos / In this work we considered four types of models for count data: the
Poisson model, the Negative Binomial Model and variations of these
models for count inflated of zeros (ZIP and ZINB).
Information on the number of put eggs for the mosquito aedes in the
city of São José of Rio Preto, SP, was analyzed through models for counting
data. The number of eggs of the mosquito aedes is studied firstly without the
covariable and through some tests, it was verified that models zero inflated
(ZIP and ZINB) are more adapted to analyze the data under study.
The ZIP model was shown inadequate, due to overdispersion generated
by the variability of the data. The ZINB model, was shown more flexible to
the data as it is shown graphically. / Neste trabalho são considerados quatro tipos de modelos para dados
de contagens: o Modelo Poisson, o Modelo Binomial Negativo
e variações destes modelos para contagens inflacionadas de
zeros (ZIP e ZINB).
Informações do número de ovos postos pelo mosquito Aedes aegypti na
cidade de São José do Rio Preto, SP, foram analisadas neste trabalho através
de modelos para dados de contagens. O número de ovos do mosquito Aedes
aegypti é primeiramente estudado sem o uso de covariáveis e através de alguns
testes, foi verificado que modelos inflacionados de zeros (ZIP e ZINB)
são mais adequados para analisar os dados em questão.
O modelo ZIP mostrou-se inadequado, devido à superdispersão gerada
pela variabilidade dos dados. Nesse caso, o modelo ZINB, mostrou-se mais
flexível ao conjunto de dados como é mostrado graficamente e em seguida
foi modelado para três períodos distintos, considerando a variável resposta
número de ovos do mosquisto Aedes aegypti .
|
7 |
Inferencia e diagnostico em modelos para dados de contagem com excesso de zeros / Inference and diagnostic in zero-inflated count data modelsMonzón Montoya, Alejandro Guillermo 13 August 2018 (has links)
Orientador: Victor Hugo Lachos Davila / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-13T06:59:43Z (GMT). No. of bitstreams: 1
MonzonMontoya_AlejandroGuillermo_M.pdf: 1229957 bytes, checksum: a4ad33aa2fe94f8744977822a1fd1362 (MD5)
Previous issue date: 2009 / Resumo: Em análise de dados, muitas vezes encontramos dados de contagem onde a quantidade de zeros excede aquela esperada sob uma determinada distribuição, tal que não é possível fazer uso dos modelos de regressão usuais. Além disso, o excesso de zeros pode fazer com que exista sobredispersão nos dados. Neste trabalho são apresentados quatro tipos de modelos para dados de contagem inflacionados de zeros: o modelo Binomial (ZIB), o modelo Poisson (ZIP), o modelo binomial negativa (ZINB) e o modelo beta-binomial (ZIBB). Usa-se o algoritmo EM para obter estimativas de máxima verossimilhança dos parâmetros do modelo e usando a função de log-verossimilhança dos dados completos obtemos medidas de influência local baseadas na metodologia proposta por Zhu e Lee (2001) e Lee e Xu (2004). Também propomos como construir resíduos para os modelos ZIB e ZIP. Finalmente, as metodologias descritas são ilustradas pela análise de dados reais / Abstract: When analyzing count data sometimes a high frequency of extra zeros is observed and the usual regression analysis is not applicable. This feature may be accounted for by over-dispersion in the data set. In this work, four types of models for zero inflated count data are presented: viz., the zero-inflated Binomial (ZIB), the zero-inflated Poisson (ZIP), the zero-inflated Negative Binomial (ZINB) and the zero-inflated Beta-Binomial (ZIBB) regression models. We use the EM algorithm to obtain maximum likelihood estimates of the parameter of the proposed models and by using the complete data likelihood function we develop local influence measures following the approach of Zhu and Lee (2001) and Lee and Xu (2004). We also discuss the calculation of residuals for the ZIB and ZIP regression models with the aim of identifying atypical observations and/or model misspecification. Finally, results obtained for two real data sets are reported, illustrating the usefulness of the proposed methodology / Mestrado / Mestre em Estatística
|
8 |
Equações de estimação generalizadas com resposta binomial negativa: modelando dados correlacionados de contagem com sobredispersão / Generalized estimating equations with negative binomial responses: modeling correlated count data with overdispersionClarissa Cardoso Oesselmann 12 December 2016 (has links)
Uma suposição muito comum na análise de modelos de regressão é a de respostas independentes. No entanto, quando trabalhamos com dados longitudinais ou agrupados essa suposição pode não fazer sentido. Para resolver esse problema existem diversas metodologias, e talvez a mais conhecida, no contexto não Gaussiano, é a metodologia de Equações de Estimação Generalizadas (EEGs), que possui similaridades com os Modelos Lineares Generalizados (MLGs). Essas similaridades envolvem a classificação do modelo em torno de distribuições da família exponencial e da especificação de uma função de variância. A única diferença é que nessa função também é inserida uma matriz trabalho que inclui a parametrização da estrutura de correlação dentro das unidades experimentais. O principal objetivo desta dissertação é estudar como esses modelos se comportam em uma situação específica, de dados de contagem com sobredispersão. Quando trabalhamos com MLGs esse problema é resolvido através do ajuste de um modelo com resposta binomial negativa (BN), e a ideia é a mesma para os modelos envolvendo EEGs. Essa dissertação visa rever as teorias existentes em EEGs no geral e para o caso específico quando a resposta marginal é BN, e além disso mostrar como essa metodologia se aplica na prática, com três exemplos diferentes de dados correlacionados com respostas de contagem. / An assumption that is common in the analysis of regression models is that of independent responses. However, when working with longitudinal or grouped data this assumption may not have sense. To solve this problem there are several methods, but perhaps the best known, in the non Gaussian context, is the one based on Generalized Estimating Equations (GEE), which has similarities with Generalized Linear Models (GLM). Such similarities involve the classification of the model around the exponential family and the specification of a variance function. The only diference is that in this function is also inserted a working correlation matrix concerning the correlations within the experimental units. The main objective of this dissertation is to study how these models behave in a specific situation, which is the one on count data with overdispersion. When we work with GLM this kind of problem is solved by setting a model with a negative binomial response (NB), and the idea is the same for the GEE methodology. This dissertation aims to review in general the GEE methodology and for the specific case when the responses follow marginal negative binomial distributions. In addition, we show how this methodology is applied in practice, with three examples of correlated data with count responses.
|
9 |
[en] A BIVARIATE GARMA MODEL WITH CONDITIONAL POISSON DISTRIBUTION / [pt] UM MODELO GARMA BIVARIADO COM DISTRIBUIÇÃO CONDICIONAL DE POISSONPRISCILLA FERREIRA DA SILVA 02 May 2014 (has links)
[pt] Os modelos lineares generalizados auto regressivos com médias móveis (do inglês GARMA), possibilitam a modelagem de séries temporais de dados de contagem com estrutura de correlação similares aos dos modelos ARMA. Neste trabalho é desenvolvida uma extensão multivariada do modelo GARMA, considerando a especificação de um modelo Poisson bivariado a partir da distribuição de Kocherlakota e Kocherlakota (1992), a qual será denominada de modelo Poisson BGARMA. O modelo proposto é adequado para séries de contagens estacionárias, sendo possível, através de funções de ligação apropriadas, introduzir deterministicamente o efeito de sazonalidade e de tendência. A investigação das propriedades usuais dos estimadores de máxima verossimilhança (viés, eficiência e distribuição) foi realizada através de simulações de Monte Carlo. Com o objetivo de comparar o desempenho e a aderência do modelo proposto, este foi aplicado a dois pares de séries reais bivariadas de dados de contagem. O primeiro par de séries apresenta as contagens mensais de óbitos neonatais para duas faixas de dias de vida. O segundo par de séries refere-se a contagens de acidentes de automóveis diários em dois períodos: vespertino e noturno. Os resultados do modelo proposto, quando comparados com aqueles obtidos através do ajuste de um modelo Gaussiano bivariado Vector Autoregressive (VAR), indicam que o modelo Poisson BGARMA é capaz de capturar de forma adequada as variações de pares de séries de dados de contagem e de realizar previsões com erros aceitáveis, além de produzir previsões probabilísticas para as séries. / [en] Generalized autoregressive linear models with moving average (GARMA) allow the modeling of discrete time series with correlation structure similar to those of ARMA’s models. In this work we developed
an extension of a univariate Poisson GARMA model by considerating the specification of a bivariate Poisson model through the distribution presented on Kocherlakota and Kocherlakota (1992), which will be called
Poisson BGARMA model. The proposed model not only is suitable for stationary discrete series, but also allows us to take into consideration the effect of seasonality and trend. The investigation of the usual properties of the maximum likelihood estimators (bias, efficiency and distribution) was performed using Monte Carlo simulations. Aiming to compare the performance and compliance of the proposed model, it was applied to two pairs of series of bivariate count data. The first pair is the monthly counts of neonatal deaths to two lanes of days. The second pair refers to counts of daily car accidents in two distinct periods: afternoon and evening. The results of our model when compared with those obtained by fitting a bivariate Vector Autoregressive Gaussian model (VAR) indicates that the Poisson BGARMA model is able to proper capture the variability of bivariate vectors of real time series of count data, producing forecasts with acceptable errors and allowing one to obtain probability forecasts.
|
10 |
Modelos estatísticos para mapeamento de QTL associados a dados de contagem / Statistical models for QTL mapping associated to counting dataKamogawa, Karen Pallotta Tunin 15 May 2009 (has links)
Este estudo teve por objetivo analisar e comparar metodologias estatísticas para fins de mapeamento de QTL associados à resistência a ectoparasitas em bovinos. Os animais, submetidos à infestação artificial, foram periodicamente avaliados por contagens, como número de carrapatos. Estes dados se caracterizam como medidas repetidas e, via de regra, não atendem ou atendem parcialmente as exigências usuais da análise, para mapeamento de QTL, dentre elas a de apresentar distribuição normal e independência dos erros. Ainda não está bem definido qual seria a melhor estratégia para analisar dados com o perfil descrito. Algumas alternativas seriam transformações de dados que permitam o uso dos programas já disponíveis, ou o desenvolvimento de programas que utilizem outras distribuições como Poisson ou Poisson inflada de zeros (ZIP). Esta proposta está inserida na parceria entre EMBRAPA - Gado de Leite e a ESALQ/USP, para desenvolvimento do projeto de mapeamento de QTL em bovinos mestiços (Gir x Holandês), para várias características incluindo a resistência a parasitas. Foram utilizados 263 animais F2, genotipados com 5 marcadores moleculares no cromossomo 23, na tentativa de mapear QTL para característica de resistência a carrapatos. Dados coletados naquela população F2 e dados simulados em diferentes cenários, serão a base para a comparação de estratégias de análise e mapeamento de QTL. Os modelos de mapeamento clássico, assim como a utilização de transformações dos dados originais foram comparados a modelos de regressão Poisson e modelo ZIP. Os modelos Poisson e ZIP apresentaram os melhores resultados quando trabalhamos com dados de contagem inflacionados de zeros, porém em outros cenários a transformação dos dados originais se mostrou igualmente eficiente. Dependendo do propósito do mapeamento (seja ele localizar ou estimar o efeito), cada modelo possui suas vantagens e suas limitações. Assim, sempre é recomendável uma prévia análise descritiva dos dados para que o melhor modelo seja utilizado. / This study has as main objective to analyze and compare statistical approaches to QTL mapping for parasites resistance in bovines. The animals, under artificial infestation, were periodically evaluated by counting, as ticks count. These data are characterized as repeated measures and, usually, dont follow or partially follow the usual requirements for the analysis, for QTL mapping, that is to present normal distribution and error independence. It is not clear yet which will be the best strategy to analyze this kind of data. Some alternatives could be data transformation that allows the use of software available on the web, or the development of specific programs that use other types of distribution like Poisson or Zero Inflated Poisson (ZIP).This work is an association between EMBRAPA Gado de Leite and ESALQ/USP, to the development of the QTL mapping project for crossbred bovines (Gyr x Holstein), for different characteristics including the parasite resistance. Were used 263 animals F2, genotyped for 5 molecular markers on the chromosome 23, aiming to map QTL for characteristics of parasite resistance. Data collected on this F2 population and simulated data in different scenarios will be the base for the strategies of the QTL mapping approaches comparison. The classical mapping models and the use of data transformation of the original data were compared to Poisson regression and ZIP models. The Poisson and ZIP models presented the best results when working with zero inflated count data however in some other scenarios the data transformation showed similar efficiency. Depending on the purpose of the mapping (this meaning locate or estimate the QTL effect) each model has its vantages and its limitations. This way, it is always advisable to make a previous descriptive analysis of the data to better choose the model.
|
Page generated in 0.0628 seconds