21 |
Structural Analysis of Poloidal and Toroidal Plasmons and Fields of Multilayer NanoringsGarapati, Kumar Vijay 30 June 2017 (has links)
Multilayered metallo-dielectric nanoparticles are increasingly considered in various applications to control the spatial and temporal behavior of electromagnetic fields. In particular, the surface mode excitation by photons or electrons in metal nanorings finds significant applications because of the implied field distribution and electromagnetic energy confinement. However, most solid nanorings that are multilayered and/or embedded in a medium have non-simply connected geometry resulting in surface modes which are not linearly independent. That is, unlike particle plasmon eigenmodes in other geometries, the amplitudes of the eigenmodes of tori exhibit a distinct forward and backward coupling. We investigate the surface modes of such toroidal nano-structures and obtain the canonical plasmon dispersion relations and resonance modes for arbitrarily layered nanorings. When seeking the nonretarded surface modes for a stratified solid torus, we obtain a three-term difference equation which plays an important role in obtaining the needed dispersion relations. The obtained dispersion relations are investigated in depth in terms of the involved matrix continued fractions and their convergence properties including their determinant forms for computing the plasmon eigenmodes. The numerical solutions of the dispersion relations in case of a solid ring are presented for comparison and the resonance frequencies for the first few dominant modes of a ring composed of plasmon supporting materials such as gold, silver, and aluminum are provided and compared to those for a silicon ring. The mode complementarity and hybridization in multilayered toroidal structures is discussed and different ring configurations are simulated in the quasistatic limit by selecting number of layers modeled by their local dielectric functions. A generalized Green’s function with derivation intricacies addressed for multilayer tori is obtained from which one may calculate and study the scattering behavior of any of the modes that may exist in the many layer system. In particular, the electric potential distribution corresponding to individual poloidal and toroidal modes in response to an arbitrarily polarized external field and the field of electrons is obtained. The results are applied to obtain the local density of states and decay rate of a dipole near the center of the torus. Finally, two new types of toroidal particles in the form of janus nanorings are introduced.
|
22 |
Relações de dispersão deformadas na cosmologia inflacionária / Dispersion relations in inflationary cosmologyMachado, Ulisses Diego Almeida Santos 24 September 2012 (has links)
Relação de dispersão é outro nome para a função Hamiltoniana, cujo conhecimento especica completamente a dinâmica de um sistema no formalismo da mecânica classica. Sua escolha está intimamente vinculada às simetrias do sistema e, no contexto cosmologico aqui apresentado, com as simetrias locais obedecidas pelas leis fsicas. Mais ainda, a contribuição da materia na dinâmica cosmologica reflete a escolha do grupo local de simetrias das leis fsicas. Por outro lado, o problema fundamental da cosmologia pode ser definido como a construção de um modelo de evolução temporal de estados que, sob as hipoteses mais simples sobre estados iniciais (digamos, que demande a menor quantidade de informação possível para serem enunciadas), prediga o estado atual observado. O paradigma inacionario é atualmente a ideia que melhor cumpre esta denição, uma vez que prediz que uma grande variedade de condições iniciais leva a aspectos fundamentais do universo observado. Contudo, os mecanismos usuais de realização da inflação sofrem de problemas conceituais. O ponto de vista deste trabalho e que a realização convencional da inflação, isto é, atraves dos campos escalares minimamente acoplados, é a formulação localmente relativisticamente invariante da inflação. A maneira de incluir quebras e deformações da estrutura de simetrias locais na cosmologia é não única e está associado ao chamado problema trans Planckiano da inflação. Analogamente, a motivação conceitual para incluir esse tipo de modicação tampouco é unica. Dependendo do esquema de realização, a versão localmente não relativstica da mesma pode apresentar graves diculdades de conciliação com observações atuais, ou apresentar vantagens conceituais em relacão ao modelo padrão de inflacão, enquanto em conformidade com observações cosmológicas. Da maneira como foi posto o problema fundamental da cosmologia, a escolha das simetrias locais influi na regra de evolução dos estados. O conceito de simetrias encontra sua formulação independente de teorias físicas no formalismo da teoria de grupos, mas consideraremos uma extensão da ideia, de aplicabilidade mais geral, a teoria das algebras de Hopf que, de certo modo, trata das simetrias de estruturas algebricas. Esta extensão é útil inclusive no trato de simetrias dos espacos não comutativos, uma das principais propostas fsicas que em última analise afeta a estrutura de simetrias locais do espaco-tempo. A expressão simetrias locais, por si só, não diz muito sem a consideração de regras de realização. Essas regras dependem da estrutura matematica das observaveis da teoria. Sob hipoteses muito gerais, que não especicam uma teoria em particular, é possível mostrar, não como um teorema matematico formal, mas como uma hipotese tecnicamente bem motivada, que existem apenas dois tipos de teorias fsicas: as classicas e as quânticas. Trabalharemos sob essas hipoteses, as quais se formulam algebricamente assumindo a estrutura de C*-álgebra para as observaveis físicas, outra motivação para o uso das álgebras de Hopf para descrição das simetrias da natureza. / Dispersion relation is another name for the Hamiltonian function whose knowledge completely specifies the dynamics in the formalism of classical mechanics. Its choice is intimately related to the symmetries of the system, and, in the cosmological context here exposed, with the local space-time symmetries obeyed by physical laws. For the other side, the fundamental problem of cosmology can be defined as a construction of a time evolution model of states which, under simplest possible hypothesis concerning initial conditions (say, which demands the minimal amount of information to be specified), predicts the present observed state. The inflationary paradigm is currently the idea which better accomplishes this definition, since it predicts that a great variety of initial conditions lead to essential aspects of observed universe. The usual mechanisms of inflation suffer, however, with conceptual problems. The point of view of this work is that the usual realization of inflation based on weakly coupled scalar fields is the local relativistic invariant realization. The way of including breaks and deformations of the local space-time symmetries is not unique and it is associated to the so called Trans-Planckian problem of inflation. Analogously, the motivation to include this kind of modification is neither unique. Depending of the scheme of realization, the locally non-relativistic version may lead to serious difficulties in conciliation with observations, or to conceptual advantages over standard formulations while in accordance with observational data. In the way that was proposed the fundamental problem of cosmology, the choice of local symmetries affects the rule of evolution of states. The concept of symmetry finds its formulation independently of physical theories in the group theory formalism, but we will consider an extension of the idea, with wider applicability, the theory of Hopf algebras, which is about symmetries of algebraic structures. That extension is also useful to deal with symmetries of non-commutative spaces, one of the main physical proposals that affects the structure of space-time symmetries. The expression, local symmetries, by itself, does not say too much without considering realization rules. Those rules depend on mathematical structure of observables in the theory. Under very general hypothesis that do not specify a particular theory, it is possible to show, not as a formal mathematical theorem, but as a technically well motivated hypothesis, that only two types of physical theories do exist: The classical ones and the quantum ones. We are going to work under those hypothesis, which can be algebraically formulated assuming a C*-algebra structure for physical observables, another motivation for the use of algebraic structures like Hopf algebras for the description of nature\'s symmetries
|
23 |
Gravity actions from matter actionsWitte, Christof 16 June 2014 (has links)
Ausgehend von der Forderung, dass die Dynamik klassischer Materiefelder auf einer glatten Mannigfaltigkeit prädiktiv und quantisierbar sein muss, leiten wir einen Satz von „Mastergleichungen“ her, deren Lösungen die Dynamik (in Form einer Lagrangedichte) der den Materiegleichungen zugrundeliegenden Geometrie beschreiben. Es gelingt also das physikalische Problem der Suche nach geeigneten Gravitationsdynamiken für eine beliebige tensorielle Raumzeitgeometrie, die physikalische Materie tragen kann, in die bloß noch mathematische Frage nach der Lösung eines Systems von linearen partiellen Differentialgleichungen zu reformulieren. Dieses Ergebnis fußt auf der Einsicht, dass die Forderung nach der Prädiktivität und Quantisierbarkeit einer Materietheorie zunächst die möglichen Klassen der zugrundeliegenden Raumzeitgeometrien auf solche beschränkt, die bi-hyperbolisch sind und die Unterscheidung von positiven und negativen Energien zulassen. Gleichzeitig stellen solche Materietheorien bereits alle kinematischen Strukturen zur Verfügung, die nötig sind, um die Dynamik der Geometrie als Anfangswertproblem zu formulieren. Die Mastergleichungen stellen dann einen Ausdruck dafür dar, dass die Lagrangefunktion der Gravitationsdynamik, die die zeitliche Entwicklung von geometrischen Anfangsdaten beschreibt, eine Darstellung der Hyperflächendeformationsalgebra sein muss, welche sich ausgehend von der Dynamik der Materietheorie direkt berechnen lässt. Wir geben eine allgemeine Vorgehensweise an, mit der sich die Mastergleichungen für eine beliebige tensorielle Raumzeitgeometrie herleiten lassen und illustrieren dieses Verfahren anhand von vier physikalisch relevanten Beispielen. Die Arbeit wird abgerundet durch ein Studium von Energie-Impuls-Tensoren von Materie auf tensoriellen Raumzeiten. / Starting from classical matter dynamics on a smooth manifold that are required to be predictive and quantizable, we derive a set of `gravitational master equations'' that determine the Lagrangian describing the dynamics of the geometry on which the matter dynamics are defined. We thus convert the physical problem of finding admissible gravitational dynamics for any tensorial geometry that can support physical matter equations into the clear mathematical task of solving a system of linear partial differential equations. This result builds on the insight that predictive and quantizable matter dynamics, on the one hand, restrict the class of admissible spacetime geometries to those that are bi-hyperbolic and energy-distinguishing, and, on the other hand, provide the necessary kinematical structure needed to formulate spacetime geometry dynamics as an initial value problem. The gravitational master equations then express the fact that the Lagrangian of the gravitational dynamics must arise as a representation of the algebra of hypersurface deformations---which can be calculated from the kinematical structure imprinted on the geometry by the matter field dynamics---on a suitable geometric phase space. We provide a general prescription of how to obtain the gravitational master equations for any candidate geometry and illustrate our procedure by way of four instructive examples. We solve the master equations for metric geometry supporting Maxwell theory, finding Einstein-Hilbert dynamics as the unique solution, and for a non-trivial composite geometry supporting modified Dirac dynamics. We also discuss generalized energy-momentum tensors of matter fields and their role as sources of the gravitational dynamics obtained from the gravitational master equations.
|
24 |
Konstrukce pseudoskalárních mezonových amplitud v chirální poruchové teorii za použití disperzních metod / Construction of pseudoscalar meson amplitudes in chiral perturbation theory using a dispersive approachZdráhal, Martin January 2012 (has links)
Title: Construction of pseudoscalar meson amplitudes in chiral perturbation theory using a dispersive approach Author: Martin Zdráhal Department: Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University in Prague Supervisor: RNDr. Jiří Novotný, CSc. Abstract: We have developed a method enabling a construction of two-loop 2 → 2 scatter- ing amplitudes of pseudoscalar mesons based on the dispersion and the unitarity relations. This method is illustrated on the construction of the amplitudes of all such processes in chiral perturbation theory in isospin limit taking into account strong interactions only. Then it was used for the construction of ππ scattering amplitudes and of K → 3π and η → 3π decay amplitudes including isospin breaking effects induced by different masses of the particles belonging to the same isomultiplet. These parametrizations are prepared for various phenomenological analyses of the ππ scattering lengths and of the isospin breaking effects, both of which could pro- vide us important information for the understanding of quantum chromody- namics at low energies. Finally, we have performed the phenomenological study of η → 3π decay and obtained a value of the quark mass ratio 1/R = (md − mu)/(ms − ˆm). Our conservative estimate is R = 39.6+2.5 −5.1....
|
25 |
Separação de efeitos de sobreposição de espectros obtidos por WDXRF usando o método de RietveldSALVADOR, VERA L.R. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:51:15Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:06Z (GMT). No. of bitstreams: 1
11260.pdf: 6178223 bytes, checksum: b81ce1592f127211fd426b186d3b8369 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
26 |
Separação de efeitos de sobreposição de espectros obtidos por WDXRF usando o método de RietveldSALVADOR, VERA L.R. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:51:15Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:06:06Z (GMT). No. of bitstreams: 1
11260.pdf: 6178223 bytes, checksum: b81ce1592f127211fd426b186d3b8369 (MD5) / Tese (Doutoramento) / IPEN/T / Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
|
27 |
Relações de dispersão deformadas na cosmologia inflacionária / Dispersion relations in inflationary cosmologyUlisses Diego Almeida Santos Machado 24 September 2012 (has links)
Relação de dispersão é outro nome para a função Hamiltoniana, cujo conhecimento especica completamente a dinâmica de um sistema no formalismo da mecânica classica. Sua escolha está intimamente vinculada às simetrias do sistema e, no contexto cosmologico aqui apresentado, com as simetrias locais obedecidas pelas leis fsicas. Mais ainda, a contribuição da materia na dinâmica cosmologica reflete a escolha do grupo local de simetrias das leis fsicas. Por outro lado, o problema fundamental da cosmologia pode ser definido como a construção de um modelo de evolução temporal de estados que, sob as hipoteses mais simples sobre estados iniciais (digamos, que demande a menor quantidade de informação possível para serem enunciadas), prediga o estado atual observado. O paradigma inacionario é atualmente a ideia que melhor cumpre esta denição, uma vez que prediz que uma grande variedade de condições iniciais leva a aspectos fundamentais do universo observado. Contudo, os mecanismos usuais de realização da inflação sofrem de problemas conceituais. O ponto de vista deste trabalho e que a realização convencional da inflação, isto é, atraves dos campos escalares minimamente acoplados, é a formulação localmente relativisticamente invariante da inflação. A maneira de incluir quebras e deformações da estrutura de simetrias locais na cosmologia é não única e está associado ao chamado problema trans Planckiano da inflação. Analogamente, a motivação conceitual para incluir esse tipo de modicação tampouco é unica. Dependendo do esquema de realização, a versão localmente não relativstica da mesma pode apresentar graves diculdades de conciliação com observações atuais, ou apresentar vantagens conceituais em relacão ao modelo padrão de inflacão, enquanto em conformidade com observações cosmológicas. Da maneira como foi posto o problema fundamental da cosmologia, a escolha das simetrias locais influi na regra de evolução dos estados. O conceito de simetrias encontra sua formulação independente de teorias físicas no formalismo da teoria de grupos, mas consideraremos uma extensão da ideia, de aplicabilidade mais geral, a teoria das algebras de Hopf que, de certo modo, trata das simetrias de estruturas algebricas. Esta extensão é útil inclusive no trato de simetrias dos espacos não comutativos, uma das principais propostas fsicas que em última analise afeta a estrutura de simetrias locais do espaco-tempo. A expressão simetrias locais, por si só, não diz muito sem a consideração de regras de realização. Essas regras dependem da estrutura matematica das observaveis da teoria. Sob hipoteses muito gerais, que não especicam uma teoria em particular, é possível mostrar, não como um teorema matematico formal, mas como uma hipotese tecnicamente bem motivada, que existem apenas dois tipos de teorias fsicas: as classicas e as quânticas. Trabalharemos sob essas hipoteses, as quais se formulam algebricamente assumindo a estrutura de C*-álgebra para as observaveis físicas, outra motivação para o uso das álgebras de Hopf para descrição das simetrias da natureza. / Dispersion relation is another name for the Hamiltonian function whose knowledge completely specifies the dynamics in the formalism of classical mechanics. Its choice is intimately related to the symmetries of the system, and, in the cosmological context here exposed, with the local space-time symmetries obeyed by physical laws. For the other side, the fundamental problem of cosmology can be defined as a construction of a time evolution model of states which, under simplest possible hypothesis concerning initial conditions (say, which demands the minimal amount of information to be specified), predicts the present observed state. The inflationary paradigm is currently the idea which better accomplishes this definition, since it predicts that a great variety of initial conditions lead to essential aspects of observed universe. The usual mechanisms of inflation suffer, however, with conceptual problems. The point of view of this work is that the usual realization of inflation based on weakly coupled scalar fields is the local relativistic invariant realization. The way of including breaks and deformations of the local space-time symmetries is not unique and it is associated to the so called Trans-Planckian problem of inflation. Analogously, the motivation to include this kind of modification is neither unique. Depending of the scheme of realization, the locally non-relativistic version may lead to serious difficulties in conciliation with observations, or to conceptual advantages over standard formulations while in accordance with observational data. In the way that was proposed the fundamental problem of cosmology, the choice of local symmetries affects the rule of evolution of states. The concept of symmetry finds its formulation independently of physical theories in the group theory formalism, but we will consider an extension of the idea, with wider applicability, the theory of Hopf algebras, which is about symmetries of algebraic structures. That extension is also useful to deal with symmetries of non-commutative spaces, one of the main physical proposals that affects the structure of space-time symmetries. The expression, local symmetries, by itself, does not say too much without considering realization rules. Those rules depend on mathematical structure of observables in the theory. Under very general hypothesis that do not specify a particular theory, it is possible to show, not as a formal mathematical theorem, but as a technically well motivated hypothesis, that only two types of physical theories do exist: The classical ones and the quantum ones. We are going to work under those hypothesis, which can be algebraically formulated assuming a C*-algebra structure for physical observables, another motivation for the use of algebraic structures like Hopf algebras for the description of nature\'s symmetries
|
28 |
Coherent perfect absorption in oneport devices with wedged organic thin-film absorbers: Bloch states and control of lasingHenseleit, Tony, Sudzius, Markas, Fröb, Hartmut, Leo, Karl 13 August 2020 (has links)
We are using organic small molecules as absorbing material to investigate coherent perfect absorption in layered thin-film structures. Therefore we realize strongly asymmetric resonator structures with a high optical quality dielectric distributed Bragg reflector and thermally evaporated wedged organic materials on top. We investigate the optical properties of these structures systematically by selective optical pumping and probing of the structure. By shifting the samples along the wedge, we demonstrate how relations of phase and amplitude of all waves can be tuned to achieve coherent perfect absorption. Thus almost all incident radiation dissipates in the thin organic absorbing layer. Furthermore, we show how these wedged structures on a high-quality reflective dielectric mirror can be used to determine optical dispersion relations of absorbing materials in a broad spectral range. This novel approach does not require any specific a priori knowledge on the absorbing film.
|
29 |
Teoria de Dirac modificada no Modelo Padrão Estendido não-mínimo. / Dirac theory modified in Standard Model Non-minimal extended.REIS, João Alfíeres Andrade de Simões dos 22 February 2017 (has links)
Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-12-04T14:44:31Z
No. of bitstreams: 1
João Andrade..pdf: 3163183 bytes, checksum: 0c7d19f31b8e570d13e85b371ea43554 (MD5) / Made available in DSpace on 2017-12-04T14:44:31Z (GMT). No. of bitstreams: 1
João Andrade..pdf: 3163183 bytes, checksum: 0c7d19f31b8e570d13e85b371ea43554 (MD5)
Previous issue date: 2017-02-22 / CAPES. / For the recent years, there has been a growing interest in Lorentz-violating theories.
Studies have been carried out addressing the inclusion of Lorentz-violating
terms into the Standard Model (SM). This has led to the development of the Standard
Model Extension (SME), which is a framework containing modifications that
are power-counting renormalizable and consistent with the gauge structure of the
SM. More recently, a nonminimal version of the SME was developed for the photon,
neutrino, and fermion sector additionally including higher-derivative terms. One
of the new properties of this nonminimal version is the lost of renormalizability.
In this work, we study the main aspects of a modified Dirac theory in the nonminimal
Standard-Model Extension. We focus on two types of operators namely,
pseudovector and two-tensor operators. These two operators display an unusual
property; they break the degeneracy of spin. This new property becomes manifest
in providing two di erent dispersion relations, one for each spin projection. To
solve the Dirac equation modified by those operators, we introduce a new method
that was suggested by Kostelecký and Mewes in a recent research paper. This
method allows to block-diagonalizing the modified Dirac equation and, thus, permits
us to obtain the spinors. The objectives of the current work are as follows.
First, we will review the main concepts for understanding the SME. Second, we
will introduce how to extend the minimal fermion sector to the nonminimal one.
Third, we will describe the method that block-diagonalizes the modified Dirac
equation and we will compute the field equations. And,finally, we will get the
exact dispersion relations and the spinor solutions for operators of arbitrary mass
dimension. / Nos últimos anos, houve um aumento significativo no interesse em teorias que
violam a simetria de Lorentz. Estudos têm sido realizados na tentativa de incluir
termos que violam a simetria de Lorentz no Modelo Padrão (MP). Esta tentativa
culminou no surgimento do chamado Modelo Padrão Estendido (MPE). Este modelo
contempla todas as possíveis modificações que são consistentes com as propriedades
já bem estabelecidas, tais como renormalizabilidade e a estrutura de gauge
do MP. Mais recentemente, uma versão não-mínima do MPE foi desenvolvida
para os setores dos fótons, neutrinos e para os férmions. Esta versão não-mínima
caracteriza-se pela presença de altas derivadas. Uma das novas propriedades nesta
versão não-mínima é a perda da renormalizabilidade.
Neste trabalho, estudamos os principais aspectos da teoria de Dirac modi cada
no MPE não-mínimo. Nós nos concentramos em dois tipos de operadores a saber,
operadores pseudovetoriais e tensoriais. Estes dois operadores exibem uma propriedade
incomum, eles quebram a degenerescência de spin. Esta nova propriedade
manifesta-se, por exemplo, na presença de duas relações de dispersão diferentes,
uma para cada projeção do spin. Para resolver a equação de Dirac modi cada por
esses operadores, introduzimos um novo método que foi sugerido por Kostelecký e
Mewes em um trabalho recente. Este método permite bloco-diagonalizar a equação
de Dirac modi cada e, assim, nos fornece uma nova maneira de obter os espinores.
Os objetivos do presente trabalho são os seguintes. Primeiro, iremos rever alguns
conceitos essenciais para o entendimento do MPE. Segundo, apresentaremos a extens
ão do setor fermiônico mínimo para o não-mínimo. Terceiro, descreveremos
o método que bloco-diagonaliza a equação de Dirac modi cada e calcularemos as
equações de campo. Por fim, calcularemos as relações de dispersão exatas e as
soluções espinoriais para cada configuração não-mínima dos operadores citados.
|
30 |
Measurement of the generalized polarizabilities of the proton by virtual Compton scattering at MAMI and Q² = 0.2 GeV² / Mesure des polarisabilités généralisées du proton par la diffusion Compton virtuelle à MIAMI à Q²=0.2 GeV²Correa, Loup 20 September 2016 (has links)
Ce travail présente la mesure des polarisabilités généralisées (GPs) électrique αE(Q2) et magnétique βM(Q2) du proton à Q2 =0.2 GeV 2. Les GPs sont définies dans le contexte de la diffusion Compton virtuelle (VCS), γ*p → γp, où Q2 est le quadri-moment de transfert du photon virtuel. Les GPs sont la généralisation des polarisabilités mesurées en diffusion Compton réel (RCS) en considérant leur dépendance en Q2. Ce sont des propriétés dynamiques du proton définissant sa déformation lorsqu'un champ électromagnétique lui est appliqué. αE(Q2) (ou βM(Q2)) donne accès à la densité de polarisation (magnétisation) locale du proton déformé. L'effet des GPs ne contribuant qu'à 1 – 15 % de la section efficace ep → epγ une mesure de haute précision est requise. Ce travail s'inscrit dans le cadre d'une expérience conduite par la collaboration A1 de MAMI à trois valeurs inédites de Q2 : 0.1,0.2 et 0.45 GeV 2. L'analyse de premier niveau comporte une calibration détaillée des données expérimentales et l'utilisation d'une simulation de l'expérience. L'extraction des GPs requiert la mesure et la renormalisation des sections efficaces ep → epγ et la correction des effets radiatifs. Les résultats obtenus par le fit « LEX » et « DR » sont en très bon accord. / This work presents the measurement of the generalized electric αE(Q2) and magnetic βM(Q2) polarisabilities (GPs) of the proton. The GPs are defined in the Virtual Compton Scattering (VCS) context, i.e. the reaction γ*p → γp where Q2 is the four-momentum transfer of the virtual photon. The GPs are a generalization of polarizabilities measured in real Compton scattering (RCS) by taking into account the Q2-dependency. They are dynamical properties of the proton when it is deformed by an applied electromagnetic fiels. αE(Q2) (or βM(Q2)) gives access to the local polarization (or magnetization) density of the deformed proton. The studied VCS process is accessible by the photon-electroproduction reaction (ep → epγ). The GP effect is a 1 – 15 % contribution to the ep → epγ cross section, requiring a high-precision mleasurement. The present work is a part of an experiment conducted by the A1 collaboration at MAMI at three new Q2 values : 0.1,0.2 and 0.45 GeV 2. This thesis details the extraction at 0.2 GeV 2. The experiment uses the 1 GeV electron beam, the 5 cm liquid hydrogen target and spectrometers A (B) to detect the final electron (proton). The first-level analysis includes a detailed calibration of experimental data, and the use of a simulation of the experiment. The measurement of the unpolarized ep → epγ cross section is described with two of its important features : the correction of the radiative effects and the renormalization. Two differents frameworks are used to extract the GPs : the Low Energy Theorem (LET) and the dispersion relation model (DR). The two extractions lead to results in good argument. The world data still raises question about the Q2-behavior of the Gps.
|
Page generated in 0.0306 seconds