• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 9
  • 9
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Glycomaterials as Non-Viral DNA Delivery Vectors: Synthesis, Characterization, and Biological Studies

Srinivasachari, Sathya January 2006 (has links)
No description available.
2

Cationic Glycopolymers for DNA Delivery: Cellular Internalization Mechanisms and Biological Characterization

McLendon, Patrick Michael 30 November 2009 (has links)
Understanding the biological mechanisms of polymeric DNA delivery is essential to develop vehicles that perform optimally. In this work, the cellular internalization mechanisms of poly(glycoamidoamine) (PGAA) DNA delivery polymers were investigated. Polymer:DNA complexes interact with cell-surface glycosaminoglycans (GAGs) in a manner independent of electrostatic interactions. Desulfation and GAG removal leads to decreased uptake. Individual polyplexes appear to have differing affinities for specific GAGs, as polyplex dissociation occurs in a charge-independent manner, and may influence binding. Internalization occurs through close interactions with GAGs, as GAGs accumulate on polyplex surfaces, resulting in negatively-charged polyplexes and decompaction of intact polyplexes is observed upon interaction with GAG. PGAA polyplexes enter cells via a complex, multifaceted internalization route. Pharmacological inhibition of endocytosis and visualization by confocal microscopy reveal that internalization occurs primarily through an actin and dynamin-dependent mechanism. Caveolae/raft-mediated endocytosis appears to be the predominant internalization mechanism, with clathrin-mediated endocytosis also significantly involved. Internalization occurs to a smaller degree via macropinocytosis and direct membrane penetration. Caveolae-mediated, but not clathrin-mediated, internalization leads to transgene expression, suggesting a targeting opportunity based on uptake mechanisms. PEGylation of PGAA polyplexes was achieved to minimize polyplex aggregation in serum. Polyplex size increased in serum, but PEGylation prevented further polyplex growth over time compared to non-PEGylated polymers. Specific targeting of hepatocytes through end-modification of PEG with galactose was unsuccessful, likely due to inaccessibility of targeting groups. Further hepatocyte targeting efforts focused on malonate-based polymers with clickable linkages for facile linkage of targeting groups. Despite favorable surface presentation of galactose, receptor-specific internalization of polyplexes was unsuccessful, as competitive inhibition in HepG2 cells resulted in significant polyplex internalization derived from nonspecific membrane interactions. Chemical modification of vehicles allows systematic study of structure-function properties leading to efficient intracellular delivery. Increasing G4 molecular weight generally increases toxicity and decreases transgene expression in HeLa cells. Incorporating galactose into a lanthanide-chelating polymer facilitated efficient cellular internalization that was visualized by two-photon microscopy. Increased gene expression was observed that correlated to increasing galactose, suggesting that polymer degradation increases gene expression. Also studied were branched peptides targeted to HIV-1 TAR, which displayed high biocompatibility and favorable internalization profiles in mammalian cells. / Ph. D.
3

Targeted Transposition of Minicircle DNA Using Single-Chain Antibody Conjugated Cyclodextrin-Modified Poly (Propylene Imine) Nanocarriers

Jugel, Willi, Tietze, Stefanie, Daeg, Jennifer, Appelhans, Dietmar, Broghammer, Felix, Aigner, Achim, Karimov, Michael, Schackert, Gabriele, Temme, Achim 09 June 2023 (has links)
Among non-viral vectors, cationic polymers, such as poly(propylene imine) (PPI), play a prominent role in nucleic acid delivery. However, limitations of polycationic polymer-based DNA delivery systems are (i) insufficient target specificity, (ii) unsatisfactory transgene expression, and (iii) undesired transfer of therapeutic DNA into non-target cells. We developed single-chain antibody fragment (scFv)-directed hybrid polyplexes for targeted gene therapy of prostate stem cell antigen (PSCA)-positive tumors. Besides mono-biotinylated PSCA-specific single-chain antibodies (scFv(AM1-P-BAP)) conjugated to neutravidin, the hybrid polyplexes comprise -cyclodextrinmodified PPI as well as biotin/maltose-modified PPI as carriers for minicircle DNAs encoding for Sleeping Beauty transposase and a transposon encoding the gene of interest. The PSCA-specific hybrid polyplexes efficiently delivered a GFP gene in PSCA-positive tumor cells, whereas control hybrid polyplexes showed low gene transfer efficiency. In an experimental gene therapy approach, targeted transposition of a codon-optimized p53 into p53-deficient HCT116p53 /PSCA cells demonstrated decreased clonogenic survival when compared to mock controls. Noteworthily, p53 transposition in PTEN-deficient H4PSCA glioma cells caused nearly complete loss of clonogenic survival. These results demonstrate the feasibility of combining tumor-targeting hybrid polyplexes and Sleeping Beauty gene transposition, which, due to the modular design, can be extended to other target genes and tumor entities.
4

Mechanisms of Cytotoxicity and Intracellular Trafficking for Gene Delivery Polymers

Grandinetti, Giovanna 18 August 2011 (has links)
Herein, different polymer libraries were examined to determine the effect polymer structure has on intracellular events. The effect of different polyamine lengths in copolymers on cellular uptake, the effect of modifying end groups of trehalose-containing polymers on transfection efficiency, and the effect of different linker lengths between galactose and a hepatocyte-targeted polymer on transfection efficiency were studied. Furthermore, it was demonstrated that polymers with terbium chelated in their repeat units could potentially be used for Förster resonance energy transfer (FRET) studies to monitor pDNA release from the polymer. Much of the work in this dissertation focuses on elucidating the intracellular mechanisms of linear poly(ethylenimine) (PEI) and how it compares to poly(L-tartaramidopentaethylenetetramine) (T4) and poly(galactaramidopentaethylenetetramine) (G4), two poly(glycoamidoamine)s synthesized by our group. The long-term goal of this project is to develop structure-function relationships between polymers and pDNA delivery efficacy that will result in the rational design of safe, efficient vehicles for therapeutic nucleic acid delivery. Many polymers used as DNA delivery vehicles display high cytotoxicity. Often, the polymers with the highest transfection efficiency are the most toxic, as demonstrated herein by PEI and T4 with varying polymer lengths. Therefore, it was of interest to study how polymer structure influences mechanisms of cytotoxicity. To this end, studies on several mechanisms of cytotoxicity, including nuclear envelope permeabilization, were conducted. Longer polymers induced more cytotoxic responses than shorter ones, and it appears that hydroxyl groups in the repeat unit of polymers play a role in polyplex formation. This research has also led us to a potential link between transfection efficiency and cytotoxicity; the polymers with the highest transfection efficiency were also the most toxic, and were also able to induce the most nuclear envelope permeability. It is possible that these polymers' ability to permeabilize the nuclear envelope is what causes their high transfection efficiency and high toxicity. In addition, flow cytometry and confocal microscopy studies revealed that polymer structure plays a role in nuclear trafficking; poly(glycoamidoamine)s G4 and T4 more dependent on intracellular machinery than PEI. This research demonstrates the impact that changes in polymer structure have on intracellular mechanisms. / Ph. D.
5

Poly(glycoamidoamine)s: Understanding their Structure and Structure-Bioactivity Relationships

Taori, Vijay P. 01 September 2010 (has links)
In order to achieve efficient therapeutic effect, it is important to understand the structure of biomaterials that are used in the therapeutic delivery system. This dissertation is dedicated towards understanding the hydrolysis pattern of plasmid DNA (pDNA) delivery vehicles comprised of poly(glycoamidoamine)s (PGAAs) under physiological conditions and effects of subtle changes in the chemical structure of the PGAAs on its biological performance. The unusual hydrolysis of the tartarate and galactarate based PGAAs was investigated by studying the hydrolysis of small model molecules which mimic the repeat unit of the respective polymers. In the case of galactarate and tartarate based molecules with terminal amines showed faster hydrolysis of the amide bonds. In addition for the tartarate based compounds, it was also found that it is necessary to have terminal amine functionality for the intramolecular hydrolysis to occur. The model compounds consists of two amide bonds and were designed symmetric, however amide bond on only one side of the tartarate moiety show underwent hydrolysis. Further studies show that one side of the amine assists the hydrolysis of the amide bond on the other side of the tartarate moiety. The degradation of poly(L-tartaramidopentaethylenetetramine) (<strong>T4</strong>) was also used to study the sustained release of pDNA from the layer-by-layer constructs of <strong>T4</strong>/pDNA. The thickness of the constructs was characterized by ellipsometry while the UV-visible spectroscopy was used to characterize the loading capacity of the constructs for pDNA. The indirect sustained release of pDNA under the physiological conditions with respect to time was characterized by the cellular uptake studies in HeLa cells. The increase in the uptake of the Cy5 labeled pDNA was seen at extended period of eleven days. The integrity of the sustained released pDNA for the transgene expression was characterized with an assay to see the expression of the green fluorescent protein (GFP) from the <strong>T4</strong>/GFP-pDNA layer-by-layer constructs. PGAAs show a very efficient delivery of the pDNA in a non-toxic manner. The chemical structure of the polymer can dictate the binding with pDNA and also the release of the pDNA form the polymer-pDNA complexes. In order to better understand the fundamentals of the nucleic acid delivery and to better design the nucleic acid delivery vehicles, subtle changes in the chemical structure of the PGAAs were designed and studied for the biological activity. The effect of charge type was investigated by designing and synthesizing guanidine based polymer series analogues to galactarate and tartarate based PGAAs (<strong>G1</strong> and <strong>T1</strong>) which incorporate secondary amines as the charge type on the polymer backbone. The guanidine based polymer series, poly(glycoamidoguanidine)s (PGAGs), show very non toxic behavior in HeLa cells at all the different polymer to pDNA ratio (<i>N/P</i> ratio) studied. Interestingly PGAGs are the only non-toxic guanidine containing polymers which are reported in the literature to the date. The cellular uptake of pDNA assisted from the PGAGs is a little higher than PGAAs compared although both the series of polymers show similar transgene expression. The transgene expression in case of PGAGs also imply the release of the polymer-pDNA complexes from the endosome. In another study of structure-bioactivity relationship based on the degree of polymerization (DP) of poly(galactaramidopentaethylenetetramine) (<strong>G4</strong>), it was found that the increase in the DP of <strong>G4</strong> increases the toxicity of the polymers in the HeLa cells. / Ph. D.
6

Plasma Mediated Molecular Delivery

Connolly, Richard J. 29 October 2010 (has links)
Non-viral delivery of plasmid DNA has traditionally relied upon physical forces applied directly to target tissues. These physical methods typically involve contact between an applicator and the target tissue and often cause transient patient discomfort. To overcome the contact-dependent limitations of such delivery methodologies, an atmospheric direct current plasma source was developed to deposit ionized gas molecules onto localized treatment sites. The deposition of charged species onto a treatment site can lead to the establishment of an electric field with strengths similar to those used for traditional electroporation. In vitro experiments proved that this technology could transiently permeabilize cell membranes and that membrane restabilization followed first order kinetics. Optimum delivery of tracer molecules to cell suspensions occurred after 10 minutes of plasma exposure and was attained without adversely effecting cell viability. In vivo testing of the plasma discharge demonstrated the capability of this system to deliver plasmid DNA to murine skin. Initial experiments involved the injection of plasmid DNA encoding luciferase into the dermis of C57BL/6J mice and then exposing the tissue to plasma discharge for 10 mintues. Delivery by this method resulted in increased luminescence that was as much as 19-fold greater than DNA injection alone. Follow-up optimization experiments demonstrated it was possible to obtain luminescence results that were similar in magnitude to those obtained using electroporation, which under optimum conditions resulted in about a 40-fold increase in peak luminescence. Finally, optimum conditions were used to deliver a plasmid DNA encoding for the 120 kilodalton glycoprotein present on the surface of a macrophage tropic HIV. Results from this vaccination experiment indicated this method was capable of producing antigen specific humoral immune responses at similar levels as when electroporation was utilized as the delivery method.
7

Coated microneedles and microdermabrasion for transdermal delivery

Gill, Harvinder Singh 09 July 2007 (has links)
The major hurdle in the development of transdermal route as a versatile drug delivery method is the formidable transport barrier provided by the stratum corneum. Despite decades of research to overcome the stratum corneum barrier, limited success has been achieved. The objectives of this research were to develop and characterize two different strategies to overcome the stratum corneum barrier for transdermal delivery of biopharmaceuticals and vaccines. In the first strategy, coated microneedles (sharp-tipped, micron-sized structures) were developed to enable delivery of drugs directly into the skin by bypassing the stratum corneum barrier. In the second strategy, instead of bypassing the barrier, microdermabrasion was used to selectively abrade stratum corneum with sharp microparticles for topical drug application. Coated microneedles For developing painless microneedles, the first detailed study was performed to characterize the effect of microneedle geometry on pain caused by microneedle insertions in human volunteers. This study demonstrated that microneedles are significantly less painful than a 26-gage hypodermic needle and that decreasing microneedle length and numbers reduces pain. Next, the first in-depth study of microneedle coating methods and formulations was performed to (i) develop a novel micron-scale dip-coating process, (ii) test the breadth of compounds that can be coated onto microneedles, and (iii) develop a rational basis to design novel coating formulations based on the physics of dip-coating. Finally, a plasmid DNA-vaccine was coated onto microneedles to immunize mice, to provide the first evidence that microneedle-based skin immunization can generate a robust in vivo antigen-specific cytotoxic-T-lymphocyte response using similar, or lower, DNA doses on microneedles as when using the gene gun or intramuscular injection. Microdermabrasion We demonstrated for the first time that microdermabrasion in monkeys and humans can selectively, yet completely remove the stratum corneum layer. Using a mobile mode of microdermabrasion, an increase in the number of treatment passes led to greater tissue removal. Furthermore, topical application of Modified Vaccinia Ankara virus after microdermabrasion induced virus-specific antibodies in monkeys. In conclusion, both coated microneedles and microdermabrasion were developed to enable delivery of biomolecules into the skin, indicating their potential for transdermal delivery of a wide range of biopharmaceuticals and vaccines.
8

Poly(Propylene imine)-based polyplexes for non-viral, targeted delivery of nucleic acids into PSCA-positive tumor cells

Jugel, Willi 17 January 2024 (has links)
Delivery of siRNAs for the treatment of tumors critically depends on the development of efficient nucleic acid carrier systems. The complexation of dendritic polymers (dendrimers) results in nanoparticles, called dendriplexes, that protect siRNA from degradation and mediate non-specific cellular uptake of siRNA. However, large siRNA doses are required for in vivo use due to accumulation of the nanoparticles in sinks such as the lung, liver, and spleen. This suggests the exploration of targeted nanoparticles for enhancing tumor cell specificity and achieving higher siRNA levels in tumors. In this work, we report on the targeted delivery of a therapeutic siRNA specific for BIRC5/Survivin in vitro and in vivo to tumor cells expressing the surface marker prostate stem cell antigen (PSCA). For this, polyplexes consisting of single-chain antibody fragments specific for PSCA conjugated to siRNA/maltose-modified poly(propylene imine) dendriplexes were used. These polyplexes were endocytosed by PSCA-positive 293TPSCA/ffLuc and PC3PSCA cells and caused knockdown of reporter gene firefly luciferase and Survivin expression, respectively. In a therapeutic study in PC3PSCA xenograft-bearing mice, significant anti-tumor effects were observed upon systemic administration of the targeted polyplexes. This indicates superior anti-tumor efficacy when employing targeted delivery of Survivin-specific siRNA, based on the additive effects of siRNA-mediated Survivin knockdown in combination with scFv-mediated PSCA inhibition. Among non-viral vectors, cationic polymers, such as poly(propylene imine) (PPI), play also a prominent role in plasmid DNA delivery. However, limitations of polycationic polymer-based DNA delivery systems are (i) insufficient target specificity, (ii) unsatisfactory transgene expression, and (iii) undesired transfer of therapeutic DNA into non-target cells. We developed single-chain antibody fragment (scFv)-directed hybrid polyplexes for targeted gene therapy of prostate stem cell antigen (PSCA)-positive tumors. Besides mono-biotinylated PSCA-specific single-chain antibodies (scFv(AM1-P-BAP)) conjugated to neutravidin, the hybrid polyplexes comprise β cyclodextrin-modified PPI as well as biotin/maltose-modified PPI as carriers for minicircle DNAs encoding for Sleeping Beauty transposase and a transposon encoding the gene of interest. The PSCA-specific hybrid polyplexes efficiently delivered a GFP gene in PSCA-positive tumor cells, whereas control hybrid polyplexes showed low gene transfer efficiency. In an experimental gene therapy approach, targeted transposition of a codon-optimized p53 into p53 deficient HCT116p53-/-/PSCA cells demonstrated decreased clonogenic survival when compared to mock controls. Noteworthily, p53 transposition in PTEN-deficient H4PSCA glioma cells caused nearly complete loss of clonogenic survival. These results demonstrate the feasibility of combining tumor-targeting hybrid polyplexes and Sleeping Beauty gene transposition, which, due to the modular design, can be extended to other target genes and tumor entities.
9

Development and Validation of Novel Polymer-based DNA Delivery Systems for Effective and Affordable Non-viral Gene Therapies

Zhang, Jun 23 May 2022 (has links)
No description available.

Page generated in 0.043 seconds