• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Application of a High-Throughput RNAi Screen to Reveal Novel Components of the DNA Sensing Pathway

Roy, Matthew Stephen 27 September 2013 (has links)
The mammalian immune system has evolved a complex and diverse set of mechanisms to detect and respond to pathogens by recognizing conserved molecular structures and inducing protective immune responses. While many of these mechanisms are capable of sensing diverse molecular structures, a large fraction of pathogen sensors recognize nucleic acids. Pathogen-derived nucleic acids trigger nucleic acid sensors that typically induce anti-viral or anti-microbial immunity, however host-derived nucleic acids may also activate these sensors and lead to increased risk of inflammatory or autoimmune disease. Animal models and humans lacking key DNA nucleases, such as Trex1/Dnase3, accumulate intracellular DNA and develop progressive autoimmunity marked by increased Type-I Interferon (IFN) expression and inflammatory signatures. Double-stranded DNA (dsDNA) is a potent inducer of the Type-I IFN response. Many of the sensors and signaling components that drive the IFN signature following simulation with transfected dsDNA (also called 'Interferon Stimulatory DNA' or 'ISD') remain unknown. We set out to identify novel components of the ISD pathway by developing a large-scale loss-of-function genetic perturbation screen of 1003 candidate genes. We interrogated multiple human and murine primary and immortalized cells, tested several Type-I IFN reporters, and considered multiple loss-of-function strategies before proceeding with an RNAi screen whereby mouse embryonic fibroblasts were stimulated with ISD and Type-IFN pathway activation was assessed by measuring Cxcl10 protein by ELISA. Candidate genes for testing in the RNAi screen were curated from quantitative proteomic screens, IFN-beta and ISD stimulated mRNA expression profiles, and a selection of domain-based proteins including helicases, cytoplasmically located DNA- binding proteins and a set of potential negative regulators including phosphatases, deubiquitinases and known signaling proteins. We identified a number of novel ISD pathway components including Abcf1, Ptpn1 and Hells. We validated hits through siRNA-resistant cDNA rescue, chemical inhibition or targeted knockout. Additionally, we evaluated protein-protein interactions of our strongest validated hits to develop a network model of the ISD pathway. In addition to the identification of novel ISD pathway components, our enriched screening data set may provide a useful resource of candidate genes involved in the response to cytosolic DNA.
2

Development of Low-dimensional Metal Oxide Transistors for Biochemical Sensing Applications

Alghamdi, Wejdan S. 11 March 2019 (has links)
In the last two decades, there has been considerable development for biosensor devices as the need to more efficient sensing systems is increasing for monitoring the progress of medicine and help with the early diagnosis of the pathogens and treatment of diseases that would reduce the cost of patient care. DNA sensors, in particular, have attracted attention due to their abundance of practical applications in clinical diagnoses and genetic information which increase the demand for DNA probes. On the other hand, the development of the oxide semiconductors thin film transistors (TFT) devices have been greatly increased, owing to their superior electrical properties, lower cost and large coverage areas. Building a bridge across biological elements and electronic interface using advanced (TFT) platforms are based on materials design and device architecture. Here, a solution-processed multi-layer metal oxide (TFT) is explored as a novel DNA sensor. The device engineering combines the novel hetero-structure metal oxide channel that can sustain a 2-dimensional electron gas (2DEG) which leads to a higher mobility and surface functionalization capacity to create an ultrasensitive, highly stable, and versatile DNA sensor. The prototype solid-state TFT sensor features a sub-10 nm-thick metal oxide heterojunction channel of a In2O3 and a top ZnO layer. The devices developed here rely on a pyrene-based molecule as the receptor unit that is known to intercalate into double stranded DNA with a very high-affinity constant and at very low concentration.
3

Genomic Approaches to Dissect Innate Immune Pathways

Lee, Mark N 06 August 2013 (has links)
The innate immune system is of central importance to the early containment of infection. When receptors of innate immunity recognize molecular patterns on pathogens, they initiate an immediate immune response by inducing the expression of cytokines and other host defense genes. Altered expression or function of the receptors, the molecules that mediate the signal transduction cascade, or the cytokines themselves can predispose individuals to infectious or autoimmune diseases. Here we used genomic approaches to uncover novel components underlying the innate immune response to cytosolic DNA and to characterize variation in the innate immune responses of human dendritic cells to bacterial and viral ligands. In order to identify novel genes involved in the cytosolic DNA sensing pathway, we first identified candidate proteins that interact with known signaling molecules or with dsDNA in the cytoplasm. We then knocked down 809 proteomic, genomic, or domain-based candidates in a high-throughput siRNA screen and measured cytokine production after DNA stimulation. We identified ABCF1 as a critical protein that associates with DNA and the known DNA-sensing components, HMGB2 and IFI16. We also found that CDC37 regulates stability of the signaling molecule, TBK1, and that chemical inhibition of CDC37 as well as of several other pathway regulators (HSP90, PPP6C, PTPN1, and TBK1) potently modulates the innate immune response to DNA and to retroviral infection. These proteins represent potential therapeutics targets for infectious and autoimmune diseases that are associated with the cytosolic DNA response. We also developed a high-throughput functional assay to assess variation in responses of human monocyte-derived dendritic cellsto LPS (receptor: TLR4) or influenza (receptors: RIG-I and TLR3), with the goal to ultimately map genetic variants that influence expression levels of pathogen-responsive genes. We compared the variation in expression between the dendritic cells of 30 different individuals, and within paired samples from 9 of these individuals collected several months later. We found genes that have significant inter- vs. intra-individual ariation in response to the stimuli, suggesting that there is a substantial genetic component underlying variation in these responses. Such variants may help to explain differences between individuals’ risk for infectious, autoimmune, or other inflammatory diseases.
4

Inhibition of Nuclear DNA Sensing by Herpes Simplex Virus 1

Orzalli, Megan Jenkins 07 June 2014 (has links)
The detection of immunostimulatory DNA is well documented to occur at several cellular sites, but there is limited evidence of nuclear innate DNA sensing. Prior to this study, the detection of herpesviral DNA was thought to be restricted to the cytosol so as to limit the sensing of host DNA in the nucleus. However, given the nuclear lifecycle of these viruses, we hypothesized that viral DNA could be sensed in the nucleus of infected cells. To test this hypothesis we examined the activation of interferon regulatory factor 3 (IRF-3) in response to herpes simplex virus 1 (HSV-1) infection of primary human foreskin fibroblasts (HFF). Using a mutant defective for expression of all viral genes, we observed that the release of viral DNA into the nucleus is necessary to activate IRF-3 signaling. Furthermore, we determined this response to be dependent on nuclear-localized interferon inducible protein 16 (IFI16) and the cytoplasmic stimulator of interferon genes (STING) adaptor protein.
5

Synthesis and Characterization of Nanoparticles for Sensing Applications

NANATTUCHIRAYIL VIJAYAN, ANJALY 04 October 2021 (has links)
No description available.
6

Studium rozpoznáni polyomavirové infekce sensory vrozené imunity / Sensing of MPyV infection by innate immunity sensors

Rjabčenko, Boris January 2021 (has links)
Host sensors that recognize pathogen associated molecular patterns and the mechanisms of innate immune response to mouse polyomavirus (MPyV) infection were the main topics of current work. We found that MPyV did not induce interferon (IFN) production during early events of infection, but induced interleukin-6 (IL-6) and other cytokine production without inhibiting virus multiplication. Cytokine microenvironment changed the phenotype of adjacent non infected fibroblasts toward the cancer-associated fibroblast (CAF)-like phenotype. We identified Toll-like receptor 4, a sensor of the innate immunity system, to be responsible for infection dependent IL-6 production. In an effort to determine whether and where virions are released from endosomal compartments into the cytosol, we found that the hydrophobic domains of minor capsid proteins, exposed on the surface of virions after their partial disassembly in the ER, play an important role in effective escape of virions from the lumen part of endoplasmic reticulum into the cytosol, Although naked, partially disassembled virions appear before translocation to the nucleus in the cytosol, viral DNA is not recognized by cytosolic sensors at this phase of infection Sensing of MPyV resulting in IFN production occurs first during viral replication. Mutant virus,...
7

Investigations into the vaccinia virus immunomodulatory proteins C4 and C16

Scutts, Simon Robert January 2017 (has links)
Vaccinia virus (VACV) is the most intensively studied orthopoxvirus and acts as an excellent model to investigate host-pathogen interactions. VACV encodes about 200 proteins, many of which modulate the immune response. This study focusses on two of these: C16 and C4, that share 43.7 % amino acid identity. Given the sequence similarity, we explored whether C16 and C4 have any shared functions, whilst also searching for novel functions. To gain mechanistic insight, we sought to identify binding partners and determine the residues responsible. C16 has two reported functions. Firstly, it inhibits DNA-PK-mediated DNA sensing, and this study found that C4 can perform this function as well. Like C16, C4 associates with the Ku heterodimer to block its binding to DNA leading to reduced production of cytokines and chemokines. For both proteins, the function localised to the C termini and was abrogated by mutating three residues. Secondly, C16 induces a hypoxic response by binding to PHD2. This function was mapped to the N-terminal 156 residues and a full length C16 mutant (D70K,D82K) lost the ability to induce a hypoxic response. In contrast, C4 did not bind PHD2. C4 inhibits NF-κB signalling by an unknown mechanism. Reporter gene assays showed that C16 also suppresses NF-κB activity and, intriguingly, this was carried out by both the N and C termini. C16 acts at or downstream of p65 and the N terminus of C16 associated with p65 independently of PHD2-binding. Conversely, C4 acted upstream of p65, did not display an interaction with p65, and the function was restricted to its C-terminal region. Novel binding partners were identified by a screen utilising tandem mass tagging and mass spectrometry, and selected hits were validated. The C terminus of C16 associated with VACV protein K1, a known NF-κB inhibitor. Additionally, C16 bound to the transcriptional regulator ARID4B. C4 did not interact with these proteins, but the N-terminal region of C4 associated with filamins A and B. The functional consequences of these interactions remain to be determined. In vivo, C4 and C16 share some redundancy in that a double deletion virus exhibits an attenuated virulence phenotype that is not observed by single deletion viruses in the intradermal model of infection. However, non-redundant functions also contribute to virulence in that both single deletion viruses display attenuated virulence compared to a wild-type Western Reserve virus in the intranasal model of infection. Data presented also reveal that C4 inhibits the recruitment of immune cells to the site of infection, as was previously described for C16. Overall, this investigation highlights the complexity of host-pathogen interactions showing that VACV encodes two multifunctional proteins with both shared and unique functions. Moreover, their inhibition of DNA-PK emphasises the importance of this PRR as a DNA sensor in vivo.
8

Identification of viral and host mechanisms that determine innate immune activation by the DNA sensor cGAS / Identification des mécanismes viraux et hôtes qui déterminent l'activation de l’immunité innée par le senseur d'ADN cGAS

Gentili, Matteo 25 September 2017 (has links)
Les acides nucléiques sont des activateurs puissants des réponses immunitaires innées. Pour lutter contre les infections, les organismes multicellulaires ont développé de multiples façons de détecter les agents pathogènes. L'une d'entre elles est la reconnaissance de l'ADN dans le cytoplasme. La présence d'ADN dans le cytoplasme est généralement liée à des infections par des bactéries ou des virus comme le VIH. La GMP-AMP synthase cyclique (cGAS) est un capteur cytosolique essentiel de l'ADN chez les mammifères. Lors de la reconnaissance de l'ADN, cGAS synthétise le petit second messager cyclique GMP-AMP (cGAMP), qui active les voies de signalisation de l’immunité innée. De plus, cGAS joue un rôle central en réponse aux microbes et au développement de maladies auto-immunes comme les interféronopathies. Cette thèse examine le rôle de cGAS en réponse aux virus et à l’ADN du soi. En explorant la réponse médiée par cGAS en présence du VIH, nous avons constaté que dans les cellules produisant du virus, le cGAMP synthétisé par cGAS est contenu dans des particules virales et des vésicules extracellulaires. Les particules virales délivrent efficacement cGAMP aux cellules cibles et activent une réponse antivirale puissante. Le transfert de cGAMP nécessite une activité catalytique de cGAS et une fusion des particules virales avec les cellules cibles. Nous avons également montré que dans le contexte d'une infection, les virus à ADN tels que MVA et mCMV peuvent conditionner cGAMP. Par conséquent, le transfert de cGAMP médié par une infection virale est un mécanisme de défense généralisé du système immunitaire inné. Nous avons également étudié l'activation du cGAS par l'ADN en se concentrant sur l'ADN de la chromatine nucléaire. Dans les cellules eucaryotes, l'ADN est compartimenté dans deux organelles: le noyau et les mitochondries. La compartimentation nucléaire de l'ADN peut être transitoirement perdue lors de la rupture de l'enveloppe nucléaire pendant la division cellulaire et lors des ruptures d'enveloppes nucléaires dans les cellules dendritiques migrantes (DC). Nous avons constaté que la rupture de l'enveloppe nucléaire ou la perte de l'intégrité de l'enveloppe nucléaire entraînent un recrutement de cGAS sur l'ADN nucléaire. Nous avons également montré que les DC présentent un pool nucléaire de cGAS à l'état basal. La rupture de l'enveloppe nucléaire pendant le cycle cellulaire conduit au recrutement de cGAS à l'ADN nucléaire. En jouant sur la localisation cGAS, nous avons montré que le cGAS est peu actif lorsqu'il se trouve dans le noyau et la transfection d'ADN exogène permet son activité enzymatique complète. L'expression du cGAS localisé dans le noyau des DC a conduit à la maturation des DC et à la production d'interféron de type I (IFN). La région N-terminale de cGAS régule la distribution nucléaire / cytoplasmique de cGAS dans les cellules en interphases et nous avons établi que les lamines A / C sont requises pour l'accès de cGAS à l'ADN nucléaire dans les DC migrantes. De façon inattendue, nous montrons que cGAS n'est pas activé lors de la rupture de l'enveloppe nucléaire. Enfin, nous identifions l'hétérochromatine pericentromérique comme étant l'ADN de liaison préférentielle pour le cGAS nucléaire exprimé dans les DC. Au total, notre étude montre que le noyau agit comme un site intracellulaire immunitaire privilégié pour l'activation de cGAS. Collectivement, nous avons montré une pertinence de l'activation de cGAS lors d'une infection virale et découvert un mécanisme « cheval de Troie » de l'incorporation de cGAMP dans la progénie virale. Nous avons également décrit des mécanismes, encore à définir, qui limitent les réponses à l'ADN de la chromatine dans le noyau. À mesure que les preuves augmentent sur la prise en charge de cGAS en réponse à des agents pathogènes, dans des maladies auto-immunes, en réponse aux dommages causés par l'ADN et dans le développement de la sénescence cellulaire, (...) / Nucleic acids are potent activators of innate immune responses. To control infections, multicellular organisms have developed multiple ways to detect pathogens. One of these is the recognition of DNA in the cytoplasm. Presence of DNA in the cytoplasm is usually linked to infections by bacteria or viruses, such as HIV. Cyclic GMP-AMP synthase (cGAS) is an essential cytosolic sensor for DNA in mammals. Upon DNA recognition, cGAS synthetizes the small second messenger cyclic GMP-AMP (cGAMP), which activates innate immune signaling pathways. cGAS plays a pivotal role in response to microbes and in the development of autoimmune diseases such as interferonopathies. This thesis investigate the role of cGAS in response to viruses and to self DNA. By exploring the cGAS-mediated response to HIV, we found that in cells producing virus, cGAS-synthesized cGAMP is packaged in viral particles and extracellular vesicles. Viral particles efficiently deliver cGAMP to target cells and activate a potent antiviral response. The transfer of cGAMP requires cGAS catalytic activity and fusion of the viral particles with the target cells. We also showed that in the context of an infection, DNA viruses such as MVA and mCMV can package cGAMP. Therefore viral mediated cGAMP transfer is a generalized defense mechanism of the innate immune system. We further investigated cGAS activation by DNA focusing our attention on nuclear chromatin DNA. In eukaryotic cells, DNA is compartmentalized in two organelles: the nucleus and the mitochondrion. Nuclear compartmentalization of DNA can be transiently lost upon nuclear envelope breakdown during cell division and upon nuclear envelope ruptures in migrating dendritic cells (DCs). We found that nuclear envelope breakdown or loss of nuclear envelope integrity leads to cGAS recruitment on the nuclear DNA. We also showed that DCs present with a nuclear pool of cGAS at steady state. Nuclear envelope breakdown during cell cycle leads to cGAS recruitment to the nuclear DNA. By manipulating cGAS localization, we showed that cGAS is poorly active when in the nucleus, and that providing exogenous DNA unmasked its full enzymatic activity. Expression of nuclear localized-cGAS in DCs leads to DCs maturation and Type I interferon (IFN) production. The N-terminal region of cGAS regulates cGAS nuclear/cytoplasmic distribution in interphase cells and we established Lamin A/C as required for cGAS accessibility to nuclear DNA in migrating DCs. Unexpectedly, we show that cGAS is not activated upon nuclear envelope rupture. Finally, we identify the pericentromeric heterochromatin as the preferential binding DNA for expressed nuclear cGAS in DCs. Altogether, our study shows the nucleus to act as an intracellular immune-privileged site for the activation of cGAS. Collectively, we have shown relevance of cGAS activation upon viral infection and uncovered a Trojan horse mechanism of cGAMP incorporation in the viral progeny. We have also described yet to be defined regulatory mechanisms that limit responses towards chromatin DNA in the nucleus. As evidence grows for cGAS involvement in response to pathogens, in autoimmune diseases, in response to DNA damage and in the development of cell senescence, fully understanding the mechanisms of distinction between self and pathogen related DNA by the sensor will be important to develop effective means to regulate the pathway.

Page generated in 0.0809 seconds